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ABSTRACT 

Infectious disease associated-oligosaccharides are important target molecules for 

synthesis to enable studies of their functions in infection mechanisms both in humans 

and animals. Unlike solid-phase automated chemical syntheses of oligonucleotides 

and oligopeptides that serve to provide these molecules for systematic structure-

function relationships, automated chemical synthesis of oligosaccharides has been 

restricted due to the need to manage stereochemistry of each linkage and to the greater 

complexity of the monomeric carbohydrate building blocks. A new solution-phase 

automation platform that relies on fluorous solid-phase extraction (FSPE) to purify 

intermediates potentially offers easier access to complicated oligosaccharides with 

several features such as simpler monitoring of reactions, only 2-3 equivalents of 

building block usage per glycosylation cycle, labor savings, and easier access to 

previously constructed compounds. In addition, the fluorous allyl-tag used to simplify 

purification in the automation platform also allows not only direct incorporation into 

microarrays but also ready modification of the tag for facile conjugation to polymeric 

vehicles. Herein are reported the development of methods for this automation 

platform for the first construction of HIV- and Leishmania-associated 
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oligosaccharides. Automated methods to make phosphate-linked sugars as well as 

conventional glycosidic linkages are demonstrated. Several Leishmania-associated 

oligosaccharides—including capping structures, phosphate-linked capping structures 

and phosphoglycan repeats—were synthesized as probes for carbohydrate microarrays 

to screen sera of infect animals. The further development of efficient conjugation 

chemistry allowed the multivalent modification of latex beads and degradable micro-

/nanoparticles with these bioactive oligosaccharides to probe carbohydrate-related 

structure/function relationships in the stimulation of cellular immune responses. 
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CHAPTER 1 

General introduction and review of fluorous-based carbohydrate 

microarrays 

Portions of this chapter have been published as a special report in Future Medicinal 

Chemistry (2009), 1, 889-896. (Copyright 2009 Future Science) 

1. Dissertation organization 

  This dissertation consists of seven chapters. The first chapter is a review published 

in Future Medicinal Chemistry in 2009. Chapter 1 includes not only recent progress in 

microarray fabrication methods in order to perform fluorous-based microarrays on 

both covalent and non-covalent immobilized slides but also applications of fluorous-

based microarrays in the screening of protein, antibody and enzyme activities. 

Chapter 2 describes the first automated solution-phase synthesis of HIV-associated 

linear α-1,2-linked pentamannose. Unlike solid phase-based automation platforms, 

the solution phase-based automation method allows the construction of 

oligosaccharides with easy reaction monitoring through conventional techniques such 

as thin layer chromatography (TLC) and high performance liquid chromatography 

(HPLC), fewer equivalents of building blocks per coupling cyclce (1.5 ~ 2 
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equivalents), and less laborious work. Chapter 3 discusses the automated synthesis of 

Leishmania-associated carbohydrates and fluorous-based microarray for antibody 

screening. Six different fluorous-tagged Leishmania-associated carbohydrates were 

synthesized either through automated synthesizer or iterative synthesis for antibody 

screening of serum using a fluorous-based microarray. Chapter 4 discusses the 

synthesis of phosphate-linked Leishmania-associated carbohydrates by using an H-

phosphonate strategy in order to investigate the role of phosphate-linkages in 

lipophosphoglycans (LPG). Importantly, the first automated synthesis of 

phosphoglycan repeats of L. donovani was achieved in a solution-based platform with 

the development of general protocols for this type of phosphate-linked carbohydrate.  

Chapter 5 includes the synthesis of multivalent Leishmania-associated capping 

carbohydrates for the collaborative evaluation of carbohydrate structure-dependent 

immune responses. Chapter 6 describes protocols for the modification of degradable 

polymeric particles with carbohydrates for the collaborative investigation of dendritic 

cell (DC) activation against carbohydrates-modified polymeric particles. Chapter 7 

provides conclusions for this dissertation as well as future directions for carbohydrate 

research. 
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2. Flurous–based small-molecule microarrays for protein, antibody and enzyme 

screening.  

Carbohydrates are one of the most abundant biomolecules on the surface of the cell 

membrane and thereby are crucial for the interactions of cells with one another and 

with pathogens such as viruses, bacteria, and fungi. Although several functions such 

as generating energy, mediating signal transduction between different organisms, and 

providing recognition makers and structural components have long been appreciated 

roles for carbohydrates, their regulation mechanisms are still not clear. Furthermore, 

the structural complexity of carbohydrates, which are derived from the incredible 

diversity of regiochemistries and stereochemistries possible between furanose and 

pyranose rings, adds to the difficulty in studying carbohydrate binding partners such 

as proteins, enzymes and antibodies.1 Given the limitations in accessing large 

quantities of pure structurally well-defined carbohydrates, carbohydrate microarrays 

are increasingly used as a versatile tool for unveiling the possible binding associates 

for carbohydrates since the first glycan array was reported in 1985.2 

 

2.1 Overview of fluorous-based microarrays. 
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 Small molecules are an important tool for the elucidation of biological 

recognition processes.3 Currently, the best way to design molecules that have 

biological activities for soluble proteins without structural information is to screen an 

assortment of possible structures. With increasing demand for useful tools for small 

molecule screening, small molecule microarrays have become increasingly important. 

Microarray techniques allow quick assessments of possible binding partners for 

biomolecules including nucleic acids, proteins and carbohydrates, with small amounts 

of sample and therefore lower costs than multiwell plate types of screening methods.  

Small molecule microarrays are particularly valuable for creating and probing 

multivalent displays of molecules such as saccharides that mimic the multivalent 

displays of cell-surface bound compounds. 

For example, carbohydrate microarrays have clearly played a key role in facilitating 

access to information about carbohydrate-protein interactions.4 After a general 

discussion of immobilization techniques used for small molecule microarray 

fabrication using carbohydrates as an example, a more detailed discussion of 

microarrays based on noncovalent fluorocarbon interactions will be surveyed to 

highlight the unique potential of fluorine in this context 
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2.2 Immobilization strategies for microarray fabrication 

 

 

 

 Figure 1. Representative covalent and noncovalent immobilization strategies for 

small molecules for microarray fabrication: a) Immobilization of thiol-functionalized 

molecules to maleimide-modified slides, b) Immobilization of amine-functionalized 

molecules to N-hydroxysuccinimide ester-modified slides, c) Immobilization of azide-

functionalized molecules to alkyne-modified slides by Huisgen cycloaddition, d) 

Immobilization through photochemical activation of natural products to aryl-diazirin-

coated slides, e)Immobilization of lipid-containing molecules to nitrocellulose, f) 

Immobilization of amine-functionalized molecules to noncovalently modified 
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polystyrene wells containing lipid-linked isocyanates, g) Immobilization of DNA-

tagged compounds to complementary strands on surface; h) Immobilization of 

fluorocarbon-tagged molecules to fluoroalkyl-modified slides.  

 Immobilization techniques for microarray formation can be divided into two 

main categories that describe the method of attachment of the molecules to the slide 

surface: covalent immobilization and noncovalent immobilization of the molecules to 

the slide surface. (Figure 1) A basic overview of these methods using carbohydrate 

immobilization as an example follows. Among covalent immobilization techniques, 

forming a stable bond between maleimide-functionalized slides and thiol-containing 

molecules5, 6, 7 is common, as well as reactions of amine-functionalized molecules 

with N-hydroxysuccinimde (NHS)-activated glass slides8, 9. Applications of Cu(I)-

mediated 1,3-dipolar Huisgen cycloadditions between azide-containing molecules and 

alkynylated glass slides10, 11, 12 have also been utilized to covalently attach 

carbohydrates or small molecules to slide surfaces for screening. When products 

contain hydroxyl or carboxylate moieties, photoinduced cross-linking based 

immobilization techniques13 have been introduced to array small molecules on 

diazirin-coated glass slides.14 Conditions (pH, time, temperature, etc.) have to be 
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optimized to maximize reaction yields of the covalent-bond forming step. The 

subsequent challenge is quantification of those yields to know the concentration of the 

molecules that will be screened. Each of these methods, of course, requires the 

introduction of the necessary functional group into both the molecules to be screened 

and the slides themselves. In certain cases in which the small molecules have unique 

reactive functional handles, at least unmodified molecules can be used with specially-

modified slides. For example, in addition to the photocrosslinking strategy mentioned 

above, the direct immobilization of unmodified reducing sugars recently has been 

shown using hydrazide- and aminoxy-derivatized glass slides.15 (Figure 2) Fifty-eight 

unmodified glycans including mono-, oligo- and polysaccharides were then directly 

arrayed on the specially derivatized slides and then tested for binding of the sugars to 

lectins, antibodies, and bacterial cells. Although undesired products such as acyclic 

adducts from hydrazide-derivatized slides and acyclic adducts with mixture of 

alpha/beta anomers from aminoxy-derivatized slides can be present at each 

microarray spot to complicate data interpretation, this one-step immobilization 

technique can be used to probe carbohydrate-protein binding, carbohydrate-antibody 
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binding and quantification of carbohydrate-protein binding without prior modification 

of the carbohydrates. 

 

 

  

Figure 2. One-step direct immobilization of unmodified reducing sugars to 

hydrazide- and aminoxy-modified slide surfaces. 
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immobilization techniques have the potential advantage of allowing the recycling and 

reuse of slides. 

 Several strategies have emerged for such noncovalent schemes to create 

carbohydrate microarrays. An intriguing noncovalent strategy involves attachment of 

a nucleic acid strand to a compound and then immobilization of that compound onto a 

specific location of a slide where a complementary nucleic acid strand is located.16 

The authors found their DNA-directed strategy to have a lower detection limit than a 

noncovalent strategy for detecting immobilized glycoconjugates. Older noncovalent 

immobilization strategies include the attachment of neoglycolipids (NGLs) on 

nitrocellulose17 and noncovalent arrays using long hydrocarbon chains18. The latter 

method requires amine-functionalized carbohydrates16 for an isocyanate-mediated 

capture strategy to attach the long hydrocarbon chains.19 Unfortunately, the use of 

such large hydrocarbon tags to noncovalently anchor compounds to the slide surface 

can be problematic, for example when detergents are required in bioassay buffers.   

 

2.3 Noncovalent fluorous-based microarrays 
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Figure 3. Application of fluorous-based microarrays for protein screening 

 

 More recently, noncovalent immobilization based on fluorophobic rather than 

hydrophobic effects has been tested in the context of microarray formation. Selective 

immobilization of a polyfluorocarbon (C8F17) chain attached to a carbohydrate to a 
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purification strategy has been used for the production of a range of bioactive 

molecules25, the fluorous tag normally has to be removed from compounds in order to 

use traditional screening methods. The first demonstration that this fluorous tag can 

be directly incorporated into a microarray platform opens new avenues to think about 

the production and screening of compounds and other uses for fluorous tags in 

biological applications.26, 27 To date, fluorous-based small molecule microarrays have 

shown utility for protein, antibody and enzyme screening. 

  

2.4 Fluorous-based microarrays for protein and antibody screening 

 Noncovalent fluorous-based microarrays possess unique features: 1) surface 

blocking steps after immobilization are rendered unnecessary and 2) high signal to 

noise ratios and low-nonspecific binding can be achieved with fewer washing steps 

than required with more reactive slide surfaces. In addition, the fluorocarbon tag itself 

does not complicate proton NMR spectra. The initial concept was developed in the 

context of carbohydrate microarray fabrication. Namely, fluorous-tagged 

monosaccharides were noncovalently immobilized by fluorous-fluorous interactions 

on a glass slide surface specially modified with C8F17 chains22. The immobilized 
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monosaccharides were screened with the common fluorescein isothiocyanate(FITC)-

labeled lectin concanavalin A (FITC-ConA) that is known to bind to alpha-linked 

mannose, glucose and N-acetylglucosamine. Indeed, specific binding of ConA to 

immobilized mannose and N-acetylglucosamine was observed by fluorescence 

imaging. More surprisingly, the use of detergents in the buffer used for screening of 

the sugars to a different lectin did not completely destroy the noncovalent interactions. 

Noncovalent fluorous-based arrays can clearly withstand detergents not tolerated by 

noncovalent hydrocarbon-based arrays. In further experiments, fluorous-based 

carbohydrate microarrays proved not only binding of ConA with two new 

carbohydrate ligands—both diastereomers of glycerol-D-manno-heptoses—but also 

facilitated the quantitative assessment of these carbohydrate-protein interactions.21 

Spring’s group28 has reported another application of fluorous-based microarrays 

for screening and probed the chain length requirement of the fluorous tag. By 

comparison of C8F17-tagged biotin with C6F13-tagged biotin, the longer C8F17-tag 

was considered more reliable for the attachment of biotin to the fluorous-coated glass 

slide. Enhanced biotin-avidin interactions on the fluorous-coated slide were achieved 

using a polyethylene glycol spacer between the biotin and the fluorous tag (C8F17). 



www.manaraa.com

13 

This work demonstrated that not only very hydrophilic carbohydrates could be 

screened successfully in this new fluorous-based format, but also more lipophilic 

molecules such as biotin could be reliably immobilized. In addition, efficient 

protocols for recycling slides by washing with organic solvents such as methanol and 

dichloromethane were presented. 

 

Figure 4. Application of fluorous-based microarrays for antibody screening. 

 

 Microarrays are also showing promise as possible diagnostic tools in their 

detection of specific antibodies, for example against Globo-H antigens in human 

cancer sera11 or against Salmonella O-antigens in sera from Salmonella infected 

patients29. Recently, fluorous-tagged carbohydrate antigens associated with infectious 

diseases were synthesized using automated synthesis (see below). Serum samples 

from infected animals were incubated with the noncovalently immobilized sugars and 

then binding was visualized using fluorescently labeled secondary antibodies (Figure 
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4).30 The fluorous-based platform proved robust for the diagnosis of animals 

containing antibodies against the disease agent. These initial experiments show that 

fluorous-based microarrays can be used to diagnose animal exposure to pathogens. 

 

2.5 Fluorous-based microarrays for enzyme screening 

 Fluorus-based microarrays have also shown their use in screening for enzyme 

inhibitors and for enzyme activity. Small molecule microarrays were designed with 

compound to target a specific class of enzymes called histone deacetylases (HDACs). 

31 To screen for inhibitors of this enzyme that catalyzes the hydrolysis of N-acetyl 

groups on lysine residues, fluorous-tagged compounds were printed on the fluorous-

coated glass surface and screened with HDAC2, HDAC3/NCoR3 peptide complex 

and HDAC8. Incubation of the arrays with alexa-647-labeled anti-His antibodies 

subsequently permitted visualization of HDAC binding by fluorescence imaging. This 

approach, which takes advantage of detecting native HDACs from whole cell lysates, 

could serve as the basis for the discovery of a range of new HDAC inhibitors. 
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Figure 5. Illustration of the Nimzyme assay. 32 
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fhuorous-phase immobilization and NIMS, the construction of printed microarrays 

can also be imagined for the direct screening of enzymatic activity and inhibitors of 

that activity. 

 

2.6 Linking fluorous-based arrays to automated synthesis 
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Figure 6. Solution-phase automation platform vs Solid-phase automation platform. 

 

 All microarray formats are limited by the number of compounds that can be 

readily produced for inclusion in the particular array format. To date, no fluorous-

based microarray has incorporated hundreds or thousands of compounds. However, 

recent developments in the automation of multistep synthetic routes using fluorous-
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phase rather than solid-phase protocols promises to rapidly expand the availability of 

compounds already containing fluorous-tags required for their incorporation into 

fluorous-based microarrays (Figure 6).33,34 Although noncovalent fluorous 

interactions have been shown to be clearly robust enough to create a range of 

microarrays, the robustness of these interactions for repetitive robotics-based 

separations of a wide range of compounds is not obvious. However, these noncovalent 

interactions have proven reliable enough to separate intermediates in oligosaccharide 

synthesis on an automation platform with the same programmed protocol after 

investigations of parameter ranges. This new automation platform based on fluorous 

solid-phase extractions has been used to synthesize not only linear oligosaccharides, 

but also branched oligosaccharides. More recently, mono- and di-fluorous-tagged 

glucosamines have been examined for sequential separation using FSPE.35 Elution 

conditions could be found to obtain the desired di-tagged compound separate from the 

mono-tagged starting materials, thereby opening more possibilities for the automation 

of synthetic schemes that include less than optimal coupling results. Further 

applications of FSPE-based automation are now in progress for the construction of a 
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range of oligosaccharides to probe the scope and range of this new method to provide 

compounds already tagged for incorporation into fluorous-based screening protocols. 
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CHAPTER 2 

Automated synthesis of HIV-associated linear α-1,2-linked 

pentamannose 

Eun-Ho Song and Nicola L. Pohl 

Introduction 

Facile synthesis of oligosaccharide has been an issue both in organic synthesis and 

biomedical research due to difficulties in the construction of complicated 

oligosaccharides. With this demand, carbohydrate chemistry and automation method 

have quickly consolidated their position as practical and versatile method for the 

construction of oligosaccharide.  
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Figure 1. α–(1-2) linked pentamannose 
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Oligomannose has been considered as an important target molecule due to its 

unique structure and function as a GPI anchors in nature.1 In addition, poly α-

mannose has been well known as ligand for concanavalin A (Con A)2, one of 

important cell wall components 3,4 and HIV-associated carbohydrates on gp1205.      

Although the synthesis of oligomannose in an automation platform using solid 

phase has previously been reported by Seeberger’s group6, the efficiency of 

automation on the solid phase was not reliable due to several reasons such as 

consuming too much reagents (5 ~ 10 equiv of glycosyl donor per cycle) and 

difficulties of monitoring reaction. Recently, iterative synthesis of α–(1-2) linked 

tetramannose has been reported to probe the utilization of fluorous solid-phase 

extraction (FSPE) protocol in oligosaccharides synthesis.7 To increase the efficiency 

of automated platform, FSPE technique has been employed in automation platform 

and newly developed solution-phase automation platform8 enables using only 1.5 ~ 2 

equivalents of donor building blocks, monitoring the completion of reaction by TLC 

as well as easy purification through FSPE for facile synthesis of α–(1-2) linked 

pentamannose (Figure 1). 
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Herein, we present the utilization of solution-phase automation platform as a useful 

tool for the construction of HIV-associated linear oligomannose.  

 

Results and discussion  
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Figure 2. Automated synthesis of α–(1-2) linked pentamannose 

 

Fluorous-tagged mannose acceptor 49 has been prepared to improve the efficiency of 
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purification through FSPE10. Only 1.5 equivalent of trichloroacetimidate11 1 which 

can be activated under acidic condition (TMSOTf) has also been used as a glycosyl 

donor. The reaction has been done 3.5 cycles (4 x glycosylation, 3 x deacetylation and 

4 x FSPE)  for 24 h 56 min 39 sec without any labor since automated platform was 

ready to run the synthesizer for making liner pentamannose. (Figure 2)  Strikingly, 

not only 2 equiv of glycosyl donor per one cycle was consumed for the completion of 

glycosylation, but the purity of crude product 5 (18 mg) shown in HPLC traces 

(supporting information) after 7 steps (24 h 56 min 39 sec) was also remarkable even 

without further purification. Simple prep TLC gave us highly pure product (15 mg, 

73 % per step) to have reasonable 1H-, 13C-NMR and mass spectroscopy data. We 

evaluated the efficacy of solution-phase approach with a direct comparison of yield 

based on the glycosyl donor. While 27 % yield per glycosylation/deprotection cycle 

was produced in the solution-phase automation platform, only a 5 % per cycle yield 

was produced in the traditional solid-phase approach. Over many cycles, huge 

differences in building block loss will be produced.    

 

Conclusion 
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First solution-phase automated synthesis of HIV-associated linear pentamannose 

was achieved in the new solution-phase automation platform. In particular, fluorous-

tagged oligosacchrides from solution-phase automation platform can be incorporated 

into microarrays for screening antibody and protein in terms of diagnostic tool. These 

successful results suggest that the automation of oligosaccharide can be performed 

with small amount of reagents (2 equiv of glycosyl donor per cycle), less laborious 

work, and high purity of products. From these achievements, other complicated 

oligosaccharide can be introduced to the same automated platform.  

 

Experimental section 

General methods 

Solvents were reagent grade and in most cases dried prior to use. All other 

commercially available reagents were used as received unless otherwise noted. The 

organic extracts were dried over anhydrous MgSO
4
. Tetrahydrofuran (THF) was 

distilled from lithium aluminum hydride (LiAlH
4
) prior to use. Methylene chloride 

(CH
2
Cl

2
), and triethylamine (Et

3
N) were distilled from calcium hydride. Diethyl ether 

(Et
2
O) was distilled from sodium-benzophenone ketyl.  
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1H and 13C spectra NMR were obtained at 400 MHz and 100 MHz on Varian VXR-

400 NMR or on Bruker DRX-400 NMR. Mass spectra (MS) were recorded on an 

Applied Biosytems DE-Pro MALDI mass analyzer or an Applied Biosytems 

QSTAR® XL Hybrid LC/MS/MS System. Chemical shifts are reported in parts per 

million downfield relative to tetramethylsilane (δ 0.00) and coupling constants are 

reported in Hertz (Hz). The following abbreviations are used for the multiplicities: s = 

singlet; d = doublet; t = triplet; q = quartet; m = multiplet; and br = broad.   
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   Synthesis of 3-(Perfluorooctyl)propanyloxybutenyl-2-O-acetyl-3,4,6-O-benzyl-α-

D-mannopyranoside (2)9 

  To a solution of 2-O-acetyl-3,4,6-O-benzylyl-α-D-mannopyranosyl 

tricholoroacetimidate 111 (0.3 g, 0.47 mmol) and 3-

(perfluorooctyl)propanyloxybutenyl alcohol9 (0.13 g, 0.24 mmol) in dry 
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dichloroethane (5 mL) was added TMSOTf (8.5 µL, 0.05 mmol) at 25 oC. The 

reaction mixture was stirred at room temperature for 30 min. The reaction was 

quenched with triethylamine (0.5 mL) and concentrated under reduced pressure. The 

crude product was purified by solid phase extraction using fluoro flash column. 

Nonfluorous compounds were eluted with 5 mL 80 % MeOH/water and the desired 

product was eluted by 5 mL 100 % MeOH. The solvent was removed under reduced 

pressure to obtain the desired product 2 (0.20 g, 84 %).  
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Synthesis of 3-(Perfluorooctyl)propanyloxybutenyl-3,4,6-O-benzyl-2-hydroxy-α-D-

mannopyranoside (3)7

  To a solution of 3-(perfluorooctyl)propanyloxybutenyl-2-O-acetyl-3,4,6-O-benzyl- 

α-D-mannopyranoside  2 (0.2 g, 0.2 mmol) in  methanol was added Na (45 mg). 

The reaction mixture was stirred at 25 oC for 1 h and concentrated under reduced 

pressure. The crude product 3 was purified to obtain the desired product (0.19 g, 
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100 %) by silica column chromatography.   

 

ASW Pentamannose method run 

 After FSPE, the methanol elution collected in the vial was removed from the 

instrument and concentrated. Solvent was removed under reduced pressure to obtain 

the crude product (18 mg, 13 %) as colorless oil. In order to obtain pure product 5 (15 

mg, 11 %) for 1H NMR, 13 C NMR and mass spectrum, further purification was 

performed using prep TLC.  

Rf (ethyl acetate/haxane):  0.75 (25/75) 

1H NMR (CDCl 3, 400 MHz): δ (ppm) 7.35-7.11 (m, 75 H), 5.61-5.58 (m, 2H), 5.55-

5.54 (m, 1H), 5.24 (d, J = 1.6, 1H), 5.23 (d, J = 1.2, 1H), 5.15 (d, J = 0.8, 1H), 5.03 (d, 

J = 0.8, 1H), 4.98 (d, J = 1.6 , 1H), 4.88-4.71 (m, 5H), 4.68-4.33 (m, 23 H), 4.22-4.06 

(m, 6H), 3.98-3.42 (m, 29 H), 3.33 (t, J = 6.4, 2H),  2.13-2.04 (m, 2H), 2.12 (s, 3H), 

1.82-1.74 (m, 2H). 

13 C NMR (CDCl3, 100 MHz): δ (ppm) 170.3 (C=O), 138.8-138.2 (m, Cq-Aryl), 

128.6-127.5 (m, CH-Aryl), [101.6, 101.0, 99.7, 99.5, 98.7 (CHanomeric)], 79.9, 78.8, 

78.5, 77.5, 76.5,75.8, 75.5, 75.3, 75.2, 75.1, 74.9, 74.5, 73.5, 73.4, 73.0, 72.8, 72.4, 
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72.2, 72.1, 72.0, 71.9, 71.8, 69.9, 69.7, 68.9, 68.8, 66.7, 66.6, 62.9, 28.5, 28.2, 28.0, 

21.4, 21.1. 

HRMS-ESI (m/z): [M+Na]+Calcd for C152H155F17O28Na, 2775.8423; Found, 

2775.1026. 

 

- 3.5 cycles (24 h 56 min) completed for the synthesis of pentamannose. 

 

Step Task Reagent/ Operation Operation 
Time 

1 

 

 

2 

3 

4 

5 

 

6 

 

7 

8 

Glycosylation 

 

 

TLC sample 

Quenching 

Evaporation 

 

Deacetylation 

TLC sample 

Quenching 

Evaporation 

FSPE 

2 equivalent donor  (100 µmol) in 0.5 mL 

Toluene,  

1 equivalent F-tagged acceptor (50 µmol) in 1 

mL Toluene; 0.1 equivalent TMSOTf, rt 

30 µl of crude reaction mixture withdrawn 

0.5 ml TEA 

40 oC 

 

3 equivalent of NaOMe solution 

30 µl of crude reaction mixture withdrawn 

0.3 ml 0.5 M Acetic acid solution in MeOH 

50 oC 

30 min 

 

 

 

 

45 min 

  

2 h 

 

 

45 min 
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9 

10 

11 

12 

13 

14 

15 

preparation 

Sample 

loading 

         

Wash 

Wash 

Transfer 

Evaporation 

Transfer 

Evaporation 

 

 

0.4 ml DMF 

0.7 ml crude sample transferred to cartridge 

4.7 ml 80% methanol wash 

1.5 ml methanol wash (repeated 3 times) 

4.7 ml collected sample transferred to clean vial 

50 oC 

2 ml toluene added 

50 oC 

 

 

 

 

 

45 min 

 

45 min 

 

- HPLC traces of pentamannose run 
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CHAPTER 3 

Automated synthesis of Leishmania-associated carbohydrates and 

fluorous-based carbohydrate microarrays 

A paper to be submitted to Chemical Communications 

Eun-Ho Song and Nicola L. Pohl 

Introduction 

The increasing demand for oligosaccharides in the field of biomedical research led 

to the development of synthetic methods for the complicated oligosaccharide 

synthesis in the field of organic chemistry. Although several approaches, such as one-

pot solution-phase synthesis and solid-phase based automated synthesis, have been 

developed for facile synthesis of oligosaccharides,1,2 structurally complicated 

oligosaccharides are still not readily available in the market due to difficulties in the 

formation of a stereocenter upon connection with other sugars while customized DNA 

sequences and peptides are commercialized in the market.  
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Scheme 1. Fluorous phase-based automation platform and its applications. 

 

We have recently developed the first automation platform to carry out iterative 

synthesis based on fluorous-solid-phase extraction (FSPE) protocol3, rather than solid-

phase-based purification (Scheme 1). This new automation platform allows the use of 

5 to 10-fold lower building block amounts than the solid-phase approaches, but also 

enables easy monitoring of reaction by TLC. More importantly, fluorous-tagged 

products from fluorous phase-based automation platform are not only directly 

applicable in microarrays, but also capable of conjugation to ligands or other carriers.      

Leishmaniasis has been known as a parasitic disease caused by infection with over 

15 species of Leishmania. Leishmaniasis is mostly endemic throughout Africa, India, 

southern Europe, and Central and South America with an estimated 12 – 15 million 
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individuals and 2 million new cases each year. In order to prevent leishmaniasis, 

WHO have designated it as a category I (emerging and uncontrolled) disease.4 In spite 

of the significant effort made in the development of leishmaniasis vaccine, no vaccine 

against leishmaniasis is being made to support the prevention of disease.  

Cell-surface glycoconjugates are not only significant in the survival of the 

Leishmania parasite5, it also can be used as target in order to unveil the role of 

carbohydrates on the mechanism of infection. Lipophosphoglycan (LPG) is known as 

one of the major glycoconjygates in Leishmania.6 As shown in Figure 1, structure 

analysis of LPG has shown that it has three domains, a glycosylphosphatidylinositol 

(GPI) anchor, a repeating phosphorylated saccharide region, and an oligosaccharide 

cap structure.7,8 

But, the identification of structure-function relationship of the extracellular domain 

in LPG is still a challenge for both chemists and biologists. Although earlier reports 

for the synthesis of Leishmania capping structures have been featured in the 

construction of desired capping structures with different synthetic routs,9-13 

synthesized capping structures have never been prepared for microarrays. Early 

successes in microarrays for antibody binding were dedicated to detect specific 
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antibodies against Globo-H antigens in cancer patients’ sera14 or Salmonella O-

antigen in Salmonella infected patients’ sera15. However, because of limitations in 

availability of defined carbohydrate antigens and reliable tools, identifying 

interactions between carbohydrate antigens associated infectious diseases and 

antibody in serum from infected animals or human has been difficult.     

In this context, facile synthesis of oligosaccharides should be accomplished as 

prerequisite in order to economically achieve the rapid development of fluorous-based 

microarray technique which enables detection of various Leishmania species in a 

short time,   

Herein, we report the first solution-phase automated synthesis of Leishmania 

tetrasaccharide and iterative synthesis of Leishmania capping structures for the 

fluorous-based microarray of Leishmania capping structures as a possible diagnostic 

tool for the detection of antibodies in serum.  

 

Results and discussion 
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Figure 1. Fluorous alcohol and building blocks for the automated fluorous-phase 

synthesis of Leishmania tetrasaccharide. 

 

The automated synthesis of Leishmania tetrasaccharide was designed to use just 

two building blocks: a known activated mannose building block16 and a building 

block obtained from lactose (Figure 1). 
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Scheme 2. Synthesis of key disaccharide building block. (a) (i) CH2=CHCH2OH, 

TfOH, (ii) Na, MeOH (87 %); (b) (i) DMP DCM, (ii) NaBH4, CH2Cl2/MeOH (92 %); 
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(c) Ac2O, DMAP, TEA, CH2Cl2 (91 %); (d) [Ir] cat., H2, THF (94 %); (e) (i) HgO, 

HgCl2, O=(CH3)2/H2O (10/1), (ii) TCA, DBU, CH2Cl2 (89 %). 

 

The key intermediate hexa-O-benzyl orthoester 117 was prepared by orthester 

formation and follwed by benzylation from lactose in in good yield. One-step 

allylation under mild conditions using allyl alcohol and TfOH produced mainly 2-O-

unprotected saccharide 2 along with 2-O-acetylated saccharide. Further deprotection 

by NaOMe gave the desired 2-O-unprotected saccharide 2 in high yield (87% over 2 

steps). Conversion of β-glucoside 2 to α-mannoside 3 was achieved by a two-step 

oxidation-reduction process. Initial attempts to obtain 2-ulose 3 via Swern oxidation 

were unsatisfactory. Known oxidation condition18 using Ac2O/DMSO gave desired 

product in ~ 70 % yield, but it required long reaction time (48 h) and produced 

acetylated side product (5 ~ 10 %). However upon changing the oxidation conditions 

to Dess-Martin periodate, the reaction went smoothly at 35 oC for 3 h in quantitative 

yield. Further reduction with NaBH4 to invert the stereochemistry of the C2 position 

gave the desired disaccharide 3 in high yield (92 % over 2 steps). Acetylation of 3 

was performed under DMAP condition in 91 % yield. The allyl group 4 was removed 
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by isomerization to propenyl ether 5 with an iridium catalyst19 and subsequent 

hydrolysis20 under non-acidic conditions using HgO/HgCl2. The desired activated 

glycosyl donor 6 was then prepared as needed with trichloroacetonitrile/DBU. 

The important features of this approach include a suitable protecting group strategy, 

the transformation of glucose (Glc) to mannose (Man), and a fluorous solid-phase 

extraction (FSPE) technique for automation platform as an efficient purification 

method. 

Fluorous-tag 7 has been prepared to improve the efficiency of purification through 

FSPE. Trichloroacetimidates 6 and 8 that can be activated under acidic condition 

(TMSOTf) have also been used as a glycosyl donor. The reaction has been done 2.5 

cycles for 17 h 31 min without any labor since automated platform was ready to run 

the synthesizer for making Leshimania tetrasaccharide. (Scheme 3)  Strikingly, not 

only 2 eq of glycosyl donor per one cycle was consumed for the completion of 

glycosylation, but the purity of crude product 11 (30 mg) shown in HPLC traces 

(supporting information) after 5 steps (17 h 31 min) was also remarkable even without 

further purification. Simple prep TLC gave us highly pure product (21 mg, 71 % per 

step) to have reasonable 1H-, 13C-NMR and mass spectroscopy data. 
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Scheme 3. Automated fluorous-phase synthesis of Leishmania tetrasaccharide. 

 

These successful results demonstrated that the automation of oligosaccharide can 

be performed with small amount of reagents, less labor, and high purity of product. 

From these achievements, other oligosaccharide can be introduced to the same 

automated platform. 
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Scheme 4. Fluorous-tagged branched Tri- and Tetrasaccharide for microarray. 

 

Fully deprotected Fluorous-tagged branched trisaccharide 10-1 and tetrasaccharide 

11-1 were prepared after deacetylation, followed by simultaneous debenzylation and 

reduction of alkene with Pd/C/H2.   

 

Iterative synthesis of Leishmania capping structures 

Leishmania species such as L. major, L. donovani and L. mexicana have linear α-

1,2-linked mannose oligomer and lactose capping structures.7,8  Iterative synthesis of 

linear α-1,2-linked mannose oligomers has been done in order to complete libraries 

for Leishmania capping structures. Each glycosylation was performed with 1.1 

equivalent of donor rather than 1.5 equivalent of donor21 in toluene at 25 oC for 5 min. 

Facile purification of crude product by FSPE enabled easy preparation of desired 



www.manaraa.com

44 

linear α-1,2-linked dimannose 13 and trimannose 14 in high yield.  
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n = 2
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n = 1 (13)
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8

Scheme 5. Iterative synthesis of linear mannose oligomer. 

 

Deacetylation, followed by simultaneous debenzylation and reduction of alkene 

with Pd/C/H2, gave desired fully deprotected fluorous–tagged α-1,2-linked di- and tri-

mannose in high yield (Scheme 6). 
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Scheme 6. Fluorous–tagged α-1,2-linked di- and tri-mannose.  

 

Although iterative synthesis of linear α-1,2-linked dimannose 13 and trimannose 14 

has previously been reported in good yield,21 these oligomers have never been 

produced for the application in fluorous-based microarrays.    
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Figure 3. Fluorous-tagged galactose and lactose for microarray. 

 

Fully deprotected fluorous-tagged galactose 15 and lactose 16 as L. donovani 

capping structures were also prepared as reported in the literature.22  

 

Conclusion 
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In conclusion, we have shown that fully deprotected Leishmania capping structures 

for L. donovani and L. major were efficiently syntheisized either through fluorous-

based automation platform or iterative synthesis using FSPE. Conversion of β-

glucoside to α-mannoside as a key step for the synthesis of disaccharide building 

block was achieved by Dess-Martin oxidation, followed by reduction with NaBH4 in 

high yield. Most importantly, automated fluorous-phase synthesis of Leishmania 

tetrasaccharide enabled facile synthesis of target oligosaccharides in order to be 

incorporated into fluorous-based microarray with high purity, less chemicals and less 

laborious work. This fluorous-based automated platform might be a powerful tool for 

the construction of carbohydrate library for the study of structure-function 

relationships.  

 

Experimental section 

General methods 

Solvents were reagent grade and in most cases dried prior to use. All other 

commercially available reagents were used as received unless otherwise noted. The 

organic extracts were dried over anhydrous MgSO
4
. Tetrahydrofuran (THF) was 

distilled from lithium aluminum hydride (LiAlH
4
) prior to use. Methylene chloride 
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(CH
2
Cl

2
), and triethylamine (Et

3
N) were distilled from calcium hydride. Diethyl ether 

(Et
2
O) was distilled from sodium-benzophenone ketyl.  

  1H and 13C NMR spectra were obtained at 400 MHz and 100 MHz on Varian VXR-

400 NMR or on Bruker DRX-400 NMR. Mass spectra (MS) were recorded on an 

Applied Biosytems DE-Pro MALDI mass analyzer or an Applied Biosytems 

QSTAR® XL Hybrid LC/MS/MS System. Chemical shifts are reported in parts per 

million downfield relative to tetramethylsilane (δ 0.00) and coupling constants are 

reported in Hertz (Hz). The following abbreviations are used for the multiplicities: s = 

singlet; d = doublet; t = triplet; q = quartet; m = multiplet; and br = broad.   

 

Synthesis of disaccharide building block 
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Synthesis of 2,3,4,6-Tetra-O-acetyl-β-D-galactopyranosyl-(1-4)-1,2,3,6-tetra-O-

acetyl-D-glucopyranoside.19 

To a solution of lactose (1 g, 2.8 mmol) in acetic anhydride (10 mL) was added 
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catalytic amount of  iodine (14 mg, 0.1 mmol) at 25 oC. The reaction mixture was 

stirred at room temperature for 1 h. The dark brown reaction mixture was poured into 

a separatory funnel containing dichloromethane, aqueous sodium thiosulfate solution 

and crushed ice. The colorless solution from a separatory funnel was washed with 

H2O (2 x 50 mL) and sat.NaHCO3 (2 x 50 mL). It was dried with Na2SO4 and then 

concentrated under reduced vacuum to obtain the desired product with quantitative 

yield. 
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Synthesis of 2,3,4,6,-Tetra-O-acetyl-β-D-galactopyranosyl-(1-4)-3,6-di-O-acetyl-

1,2-O-(1-methoxyethylidiene)-β-D-glucopyranoside.19  

To a solution of 2,3,4,6-tetra-O-acetyl-β-D-galactopyranosyl-(1-4)-1,2,3,6-tetra-O-

acetyl-D-glucopyranoside (1.5 g, 2.2 mmol) in dichloromethane (5 mL) was added 

33 % HBr (5 mL, 28.6 mmol) in acetic acid for 10 min. The reaction mixture was 

stirred at 25 oC for 1 h and then checked TLC to check the completion of reaction. 
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After completion of reaction, the mixture was washed with cold water three times and 

then followed by washed with saturated sodium bicarbonate solution three times. The 

neutralized solution was dried with sodium sulfate and concentrated under reduced 

pressure. The crude product was used for next step without further purification. To a 

solution of hepta-acetyl lactosyl bromide in dichloromethane was added triethylamine 

(0.62 mL, 4.4 mmol), Bu4NBr (0.71 mg, 2.2 mmol) and methanol (0.077 mL, 2.64 

mmol). The reaction mixture was stirred at 40 oC for 16 h and then washed with H2O 

(1 x 50 mL). The solution was dried with Na2SO4 and then concentrated under 

reduced vacuum.  The crude produce was purified to obtain the desired product (1.19 

g, 83 % over 2 steps) by silica column chromatography.   
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Synthesis of 2,3,4,6,-Tetra-O-benzyl-β-D-galactopyranosyl-(1-4)-3,6-di-O-benzyl-

1,2-O-(1-methoxyethylidiene)-β-D-glucopyranoside 1.19  

To a solution of 2,3,4,6,-tetra-O-acetyl-β-D-galactopyranosyl-(1-4)-3,4-di-O-acetyl-
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1,2-O-(1-methoxyethylidiene)-β-D-glucopyranoside (1g, 1.5 mmol) in MeOH (5 mL) 

was added catalytic amount of Na (3.5 mg, 0.15 mmol) . The reaction mixture was 

stirred at 25 oC for 6 h and then concentrated under reduced vacuum to yield the crude 

deacetylated product as yellow foam. To a solution of deacetylated product in DMF 

(10 mL) was added 60 % NaH (0.47 g, 11.5 mmol), followed by addition of benzyl 

bromide (2.06 mL, 11.5 mmol) and tetrabuylammonium iodide (0.57 g, 1.5 mmol) at 

0 oC.  The reaction mixture was warmed up to 25 oC and stirred for 12 h. The 

reaction mixture was diluted with dichloromethane (20 mL) and then washed with 

H2O (2 x 50 mL). The organic layer was dried with Na2SO4 and concentrated under 

reduced vacuum. The crude product was purified by flash silica column 

chromatography to afford the desired product (1) (1.28 g, 89 % over 2 steps).  
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Synthesis of Allyl O-(2,3,4,6,-tetra-O-benzyl-β-D-galactopyranosyl)-(1-4)-2-O-

hydroxy-3,6-di-O-benzyl-β-D-glucopyranoside 2. 
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  A solution of 2,3,4,6,-Tetra-O-benzyl-β-D-galactopyranosyl-(1-4)-3,6-di-O-

benzyl-1,2-O-(1-methoxyethylidiene)-β-D-glucopyranoside (1) (1 g, 1.1 mmol) and 

ally alcohol (0.45 mL, 6.6 mmol) in dichloromethane (10 mL) was cooled to – 40 oC 

and TfOH (6 µL, 0.07 mmol) was added dropwise over 10 min. The reaction mixture 

was stirred at – 40 oC for 30 min and allowed to 25 oC for 1 h followed by, addition of 

triethylamine to neutralize a solution. The crude product was obtained after 

concentration of solvent under reduced vacuum. To a crude product in MeOH was 

added Na (5 mg, 0.22 mmol). The reaction mixture was stirred at 25 oC for 1 h and 

then concentrated under reduced vacuum. The crude product was purified by flash 

silica column chromatography to afford the desired product (2) (0.86 g, 87 % over 2 

steps).   

Rf (ethyl acetate/haxane):  0.50 (25/75) 

1H NMR (CDCl 3, 400 MHz): δ (ppm) 7.36-7.18 (m, 30H, aromatics), 6.09-5.99 (m, 

1H, CH2CH=CH2), 5.33 (dd, 1H, J = 17.1, 1.2 Hz, CH=CH2), 5.22 (dd, 1H, J = 10.3, 

1.2 Hz, CH=CH2), 5.08 (d, 1H, J = 11.1 Hz), 4.97 (d, 1H, J = 11.5 Hz), 4.82 (dd, 2H, 

J = 20.4, 11.1 Hz), 4.71 (dd, 2H, J = 22.8, 6.8 Hz), 4.70 (d, 1H, J = 5.3 Hz), 4.56 (dd, 

2H, J = 11.5, 4.4 Hz), 4.43 – 4.43 (d, 1Hanomeric, J = 7.6 Hz), 4.40 (m, 3H), 4.34 (d, 
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1Hanomeric, J = 7.2 Hz),  4.48 (d, 1H, J = 11.8 Hz), 4.15 (dd, 1H, J = 12.7, 6.4 Hz), 

3.96 (d, 1H, J = 9 Hz), 3.92 (d, 1H, J = 2.7 Hz), 3.81 – 3.70 (m, 3H), 3.57 – 3.46 (m, 

3H), 3.41 – 3.34 (m, 4H), 2.39 (br, 1H, OH).        

13 C NMR (CDCl3, 100 MHz): δ (ppm) [139.2, 139.1, 138.9, 138.7, 138.5, 138.2 

(Cq-Aryl)], 134.1 (CH2CH=CH2), 128.6 – 127.5 (m, CH-Aryl), 118.0 (CH=CH2), 

103.0 (CHanomeric), 101.7 (CHanomeric), 83.0, 82.7, 80.1, 76.5, 75.6, 75.5, 74.9, 74.8, 

73.7, 73.7, 73.3, 73.2, 72.8, 70.3, 68.4.    

HRMS-ESI (m/z): [M+Na]+Calcd for C57H62NaO11, 945.4190; Found, 945.5140. 
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Synthesis of Allyl O-(2,3,4,6-tetra-O-benzyl-β-D-galactopyranosyl)-(1-4)-2-O-

hydroxy-3,6-di-O-benzyl-β-D-mannopyranoside 3. 

To a solution of allyl O-(2,3,4,6-tetra-O-benzyl-β-D-galactopyranosyl)-(1-4)-3,6-di-

O-benzyl-β-D-glucopyranoside (2) (0.1 g, 0.11 mmol) in dichloromethane (5 mL) was 

added dess-martin periodinane (92 mg, 0.22 mmol). The reaction mixture was stirred 

at 35 oC for 4 h and then diluted with dichloromethane (10 mL). The diluted solution 
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was washed with sat.NaHCO3 (2 x 10 mL), H2O (1 x 10 mL), and brine (1 x 10 mL). 

The organic layer was dried with Na2SO4 and then concentrated under reduced 

vacuum.  The crude residue was dissolved in dichloromethane/MeOH (1/1) and 

cooled to 0 oC.  NaBH4 (50 mg, 1.35 mmol) was added and then the reaction mixture 

was allowed to 25 oC over 1 h.  The mixture was diluted with dichloromethane (10 

mL) and washed with H2O (1 x 10 mL), 1 % aqueous citric acid (1 x 10 mL) and 

brine (1 x 10 mL). The solvent was evaporated under reduced vacuum and dried with 

Na2SO4. The crude product was purified by flash silica column chromatography to 

afford the desired product (3) (92 m g, 92 % over 2 steps).  

Rf (ethyl acetate/haxane):  0.45 (25/75)  

1H NMR (CDCl 3, 400 MHz): δ (ppm) 7.36-7.21 (m, 30H), 5.97-5.87 (m, 1H, 

CH2CH=CH2), 5.29 (dd, 1H, J = 16.5, 1.6 Hz, CH=CH2), 5.20 (dd, 1H, J = 10.4, 1.6 

Hz, CH=CH2), 4.97 (d, 1H, J = 11.5 Hz), 4.81 (d, 1H, J = 2 Hz), 4.78 (d, 1H, J = 2.8 

Hz), 4.75 (d, 1H, J = 10.8 Hz), 4.72-4.66(m, 4H), 4.60 (d, 1H, J = 11.5 Hz), 4.50 (d, 

1Hanomeric, J = 1.2 Hz), 4.47 (d, 1H, J = 10.8 Hz), 4.45 (d, 1Hanomeric, J = 7.9 Hz), 4.41-

4.37 (m, 3H), 4.30 (d, 1H, J = 11.6 Hz), 4.12-4.07 (m, 3H), 3.92 (d, 1H, J = 2.8 Hz), 

3.84 (dd, 1H, J = 10.8, 2.8 Hz), 3.76-3.72 (m, 2H), 3.63(t, 1H, J = 8.68 Hz), 3.56 (dd, 
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1H, J = 8.4, 3.6 Hz), 3.51-3.39 (m, 4H), 2.39 (br, 1H, OH).  

13 C NMR (CDCl3, 100 MHz): δ (ppm) [139.1, 138.9, 138.7, 138.7, 138.6, 138.1 

(Cq-Aryl)], 134.1 (CH2CH=CH2), 128.6 – 127.6 (m, CH-Aryl), 118.0 (CH=CH2), 

103.4 (CHanomeric), 98.7 (CHanomeric), 82.8, 80.1, 79.5, 75.5, 75.4, 73.7, 73.6, 73.3, 73.2, 

72.8, 72.6, 70.0, 69.2, 68.9, 68.6,  

HRMS-ESI (m/z): [M+Na]+Calcd for C57H62NaO11, 945.4190; Found, 945.5131. 
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Synthesis of Allyl O-(2,3,4,6-tetra-O-benzyl-β-D-galactopyranosyl)-(1-4)-2-O-

acetyl-3,6-di-O-benzyl-β-D-mannopyranoside 4. 

To a allyl O-(2,3,4,6-tetra-O-benzyl-β-D-galactopyranosyl)-(1-4)-3,6-di-O-benzyl-β-

D-mannopyranoside (3) (80 mg, 0.09 mmol) in dichloromethane (5 mL) was added 

DMAP (6 mg, 0.05 mmol), triethylamine (0.02 mL, 0.18 mmol) and acetic anhydride 

(0.01 mL, 0.011 mmol). The reaction mixture was stirred at 25 oC for 1 h and then 

concentrated under reduced vacuum. The crude residue was dried with Na2SO4 and 

purified by flash silica column chromatography to afford the desired product (4) (76 
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mg, 91 %) 

Rf (ethyl acetate/haxane):  0.70 (25/75) 

1H NMR (CDCl 3, 400 MHz): δ (ppm) 7.30-7.18 (m, 30H), 5.92-5.82 (m, 1H, 

CH2CH=CH2), 5.58 (dd, 1H, J = 2.8, <1 Hz, CHCH(OAc)CH), 5.27 (dd, 1H, J = 17.2, 

1.6 Hz, CH=CH2), 5.18 (dd, 1H, J = 10, 1.2 Hz, CH=CH2), 4.80 (d, 1H, J = 10.8 Hz), 

4.73-4.61 (m, 4H), 4.58 (d, 1H, J = 8 Hz), 4.54 (d, 1H, J = 3.6 Hz), 4.53 (d, 1Hanomeric, 

J = <1 Hz), 4.51 (d, 1Hanomeric, J = 12 Hz), 4.42-4.32 (m, 3H), 4.24 (d, 1H, J = 11.6 

Hz), 4.10 (dd, 1H, J = 13.2, 6.4 Hz), 4.98 (t, 1H, J = 9.2 Hz), 3.85 (dd, 2H, J = 11.2, 2 

Hz), 3.79-3.68 (m, 2H), 3.60-5.53 (m, 2H), 3.49-3.45 (m, 1H), 3.41-3.39 (m, 2H), 

3.33 (t, 1H, J = 6.8 Hz), 2.03 (s, 3H, OC(O)CH3).   

13 C NMR (CDCl3, 100 MHz): δ (ppm) 170.8 (C=O), [139.0, 138.9, 138.7, 138.6, 

138.5, 138.2 (Cq-Aryl)], 133.8 (CH2CH=CH2), 128.6 – 127.4 (m, CH-Aryl), 117.8 

(CH=CH2), 115.5, 103.0 (CHanomeric), 97.7 (CHanomeric), 82.9, 80.1, 78.5, 75.8, 75.3, 

74.8, 74.6, 73.7, 73.6, 73.4, 72.7, 71.8, 70.0, 69.3, 68.9, 68.6, 21.2(CH3). 

HRMS-ESI (m/z): [M+Na]+Calcd for C59H64NaO12, 987.4295; Found, 987.3006. 
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  Synthesis of Vinyl O-(2,3,4,6-tetra-O-benzyl-β-D-galactopyranosyl)-(1-4)-2-O-

acetyl-3,6-di-O-benzyl-β-D-mannopyranoside 5. 

To a solution of allyl O-(2,3,4,6-tetra-O-benzyl-β-D-galactopyranosyl)-(1-4)-2-O-

acetyl-3,6-di-O-benzyl-β-D-mannopyranoside (4) (80 mg, 0.08 mmol) in THF (3 mL) 

was added catalytic amount of (1,5-

Cyclooctadiene)bis(methyldiphenylphosphine)iridium(I) hexafluorophosphate (2 mg, 

0.002 mmol). The stirred solution was degassed, placed under N2 and degassed. The 

reaction mixture was placed under H2 for 5 min and degassed once more to prevent 

further reduction.  The mixture was stirred at 25 oC for 30 min under N2 and then 

concentrated under reduced vacuum. The crude residue was purified by flash silica 

column chromatography to afford the desired product (5) (75 mg, 94 %). 

Rf (ethyl acetate/haxane):  0.72 (25/75) 

1H NMR (CDCl 3, 400 MHz): δ (ppm) 7.31-7.19 (m, 30H), 6.23 (d, 1H, J = 12.3 Hz, 

OCH=CH), 5.60 (dd, 1H, J = 2.6, <1 Hz, CHCH(OAc)CH), 5.15-5.07 (m, 1H, 

CH=CHCH3), 4.96 (d, 1H, J = 11.4 Hz), 4.82 (d, 1H, J = 10.9 Hz), 4.74-4.62 (m, 5H), 

4.71 (d, 1Hanomeric, J = <1 Hz), 4.59-4.55 (m, 2H), 4.51 (d, 1Hanomeric, J = 17.4 Hz), 

4.49-4.35 (m, 3H), 4.25 (d, 1H, J = 11.7 Hz), 4.00 (t, 1H, J = 9.1 Hz), 3.89 (d, 2H, J = 
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10.5 Hz), 3.78-3.70 (m, 2H), 3.64 (dd, 1H, J = 8.6, 3.2 Hz), 3.56-3.53 (m, 2H), 3.44-

3.40 (m, 1H), 3.35 (t, 1H, J = 6.3 Hz), 2.04 (s, 3H, OC(O)CH3), 1.54 (d, 3H, J = 6.54 

Hz, CHCH3).     

13 C NMR (CDCl3, 100 MHz): δ (ppm) 170.7 (C=O), 143.4(OCH=CH), [139.0, 

138.8, 138.7, 138.5, 138.2 (Cq-Aryl)], 128.6 – 127.4 (m, CH-Aryl), 104.9 

(CH=CHCH3) 103.0 (CHanomeric), 97.8 (CHanomeric), 82.9, 80.0, 78.2, 76.1, 75.4, 74.8, 

74.5, 73.7, 73.4, 72.8, 71.9, 69.2, 68.9, 68.1, , 21.2(CH3), 12.6 (CHCH3). 

HRMS-ESI (m/z): [M+Na]+Calcd for C59H64NaO12, 987.4295; Found, 987.3076 
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Synthesis of 2,3,4,6,-Tetra-O-benzyl-β-D-galactopyranosyl-(1-4)-2-O-acetyl-3,6-

di-O-benzyl-α-D-mannopyranosyl trichloroacetimidate 6. 

To a vinyl O-(2,3,4,6,-tetra-O-benzyl-β-D-galactopyranosyl)-(1-4)-2-O-acetyl-3,6-

di-O-benzyl-β-D-mannopyranoside (7) (75 mg, 0.08 mmol), and mercury oxide (24 

mg, 0.1 mmol) in 3 mL of acetone/H2O (10 mL /1mL)  was added a solution of 
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mercuric chloride (23 mg, 0.09 mmol) in 2 mL of  acetone/H2O (10 mL/1mL) for 1 

min. The reaction mixture was stirred at 25 oC for 3 h. The crude residue was filtered 

through celite and diluted with dichloromethane (5 mL). The organic layer was 

washed with sat. KI (1 x 5 mL), H2O (1 x 5 mL) and brine (1 x 5 mL). The solvent 

was concentrated under reduced vacuum and dried with Na2SO4. To a crude residue in 

dichloromethane (5 mL) was added Cs2CO3 (25 mg, 0.08 mmol) and followed by 

addition of trichloroacetonitrile (0.016 mL, 0.16 mmol) at 0 oC. The reaction mixture 

was stirred at 0 oC for 30 min and then concentrated under reduced vacuum and 

purified by flash silica column chromatography to afford the desired product (6) (74 

mg, 89 % over 2 steps). 

Rf (ethyl acetate/haxane):  0.80 (25/75) 

1H NMR (CDCl 3, 400 MHz): δ (ppm) 8.66 (s, 1H, NH=C), 7.32-7.17 (m, 30H), 6.24 

(d, 1Hanomeric, J = 1.8 Hz), 5.43 (dd, 1H, J = 3.1, 2.8 Hz, CHCH(OAc)CH), 4.97 (d, 1H, 

J = 11.6 Hz), 4.81 (d, 1H, J = 10.8 Hz), 4.76 (d, 1H, J = 12 Hz), 4.69-4.65 (m, 3H), 

4.57 (d, 1H, J = 11.2 Hz), 4.44 (d, 1H, J = 7.6 Hz), 4.40 (d, 1H, J = 11.6 Hz), 4.38 (d, 

1H, J = 11.2 Hz), 4.28-4.22 (m, 2H), 3.95 (dd, 2H, J = 8.9, 3.2 Hz), 3.87 (dd, 1H, J = 

8.9, 7.8 Hz), 3.63-3.54 (m. 2H), 3.46-3.36 (m, 3H), 1.98 (s, 3H, OAc).      
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13 C NMR (CDCl3, 100 MHz): δ (ppm) 170.4 (C=O), 160.1 (C=NH), [139.1, 138.9, 

138.7, 138.6, 138.5, 138.4 (Cq-Aryl)], 128.7 – 127.6 (m, CH-Aryl), 103.2 (CHanomeric), 

95.4 (CHanomeric), 82.8, 80.0, 75.5, 75.4, 74.9, 74.6, 74.0, 73.9, 73.7, 73.4, 72.9, 72.8, 

69.1, 68.5, 68.2, 21.1 (CH3).  

 

ASW Leishmania-tetrasaccharide method run 

After FSPE, the methanol elution collected in the vial was removed from the 

instrument and concentrated. Solvent was removed under reduced pressure to obtain 

the crude product (30 mg) as colorless oil. In order to obtain pure product (5) (21 mg, 

16 %) for 1H NMR, 13 C NMR and mass spectrum, further purification was performed 

using prep TLC.  

 

Synthesis of 3-(perfluorooctyl)propanyloxybutenyl-3,6-di-O-benzyl-4-O-

[2,3,4,6,-tetra-O-benzyl-β-D-galactopyranosyl]-2-O-[2-O-(2-O-acetyl-3,4,6-tri-O-

benzyl-α-D-mannopyranosyl)-3,4,6-tri-O-benzyl-α-D-mannopyranosyl]-α-D-

mannopyranoside 11. 

Rf (ethyl acetate/haxane): 0.75 (20/80) 
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1H NMR (CDCl 3, 400 MHz): δ (ppm) 7.33-7.11 (m, 30H), 5.62 (br, 2H), 5.47 (s, 1H), 

5.08 (s, 1H), 4.92 (d, 2H, J = 15.6 Hz), 4.82-4.77 (m, 3H), 4.70-4.59 (m, 6H), 4.55-

4.44 (m, 10H), 4.41-4.36 (m, 3H), 4.26 (d, 1H, J = 12 Hz), 4.21-4,18 (d, 1H, J = 12.4 

Hz), 4.15 (m, 1H), 4.05-3.98 (m, 2H), 3.92-3.82 (m, 10H), 3.78-3.69 (m, 8H), 5.57 (t, 

2H, J = 10 Hz), 3.41 (t, 2H, J = 9.2 Hz), 3.32-3.29 (m, 3H), 2.15-2.04 (m, 2H), 2.08 (s, 

3H), 1.80-1.73 (m, 2H).      

13 C NMR (CDCl3, 100 MHz): δ (ppm) 170.2 (C=O), [139.4, 139.2, 139.0, 138.9, 

138.8, 138.7, 138.6, 138.6, 138.6, 138.2, 138.2 (Cq-Aryl)], 128.5 – 127.2 (m, CH-

Aryl), [103.1, 101.2, 99.6, 98.2 95.4 (CHanomeric)], 83.0, 80.3, 79.7, 78.2, 75.4, 75.3, 

75.2, 75.0, 74.8, 74.5, 73.5, 73.4, 73.2, 72.7, 72.4, 72.3, 72.1, 72.0, 71.9, 69.7, 69.0, 

98.8, 68.5, 66.7, 63.0, 28.4, 28.3, 28.0, 21.3(CH3).   

HRMS-MALDI (m/z):  [M+Na]+Calcd for C125H127F17NaO23 2341.8394; Found, 

2341.3591. 

 

- 2.5 cycles (17h 31 min 39) completed for the synthesis of Leishmania-

tetrasaccharide. 

Step Task Reagent/ Operation Operation 

Time 
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1 

 

 

 

2 

3 

4 

5 

 

6 

7 

8 

 

9 

10 

11 

12 

13 

14 

15 

Glycosylation 

 

 

 

TLC sample 

Quenching 

Evaporation 

Deacetylation 

TLC sample 

Quenching 

Evaporation 

FSPE 

preparation 

Sample loading 

Wash 

Wash 

Transfer 

Evaporation 

Transfer 

Evaporation 

2 equivalent donor  (100 µmol) in 0.5 mL 

Toluene, 

1 equivalent F-tagged acceptor (50 µmol) in 1 mL 

Toluene; 0.1 equivalent TMSOTf, rt 

30 µl of crude reaction mixture withdrawn 

0.5 ml TEA 

40 oC 

3 equivalent of NaOMe solution 

30 µl of crude reaction mixture withdrawn 

0.3 ml 0.5 M Acetic acid solution in MeOH 

50 oC 

 

0.4 ml DMF 

0.7 ml crude sample transferred to cartridge 

4.7 ml 80% methanol wash 

1.5 ml methanol wash (repeated 3 times) 

4.7 ml collected sample transferred to clean vial 

50 oC 

2 ml toluene added 

50 oC 

30 min 

 

 

 

 

45 min 

 

2 h 

 

 

45 min 

 

 

 

 

 

 

45 min 

 

45 min 

 

- HPLC trace for crude product. 
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3-(perfluorooctyl)propanyloxybutanyl-4-O-[β-D-galactopyranosyl]-2-O-[2-O-(2-
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O-α-D-mannopyranosyl)-α-D-mannopyranosyl]-α-D-mannopyranoside 11-1.. 

  To a 3-(perfluorooctyl)propanyloxybutenyl-3,6-di-O-benzyl-4-O-[2,3,4,6,-tetra-O-

benzyl-β-D-galactopyranosyl]-2-O-[2-O-(2-O-acetyl-3,4,6-tri-O-benzyl-α-D 

mannopyranosyl)-3,4,6-tri-O-benzyl-α-D-mannopyranosyl]-β-D-mannopyranoside 

(11) (50 mg, 0.02 mmol) in MeOH (3 mL) was added Na (1 mg, 0.07 mmol) and 

stirred at 25 oC for 30 min. The reaction mixture was neutralized with Dowex-ion-

exchange resin and filtered through Celite pad. purified by solid phase extraction 

using fluoro flash column. The solvent was removed under reduced pressure to obtain 

deacetylated product. To a sluotion of deacetylated product in MeOH (3mL) was 

added 10 % Pd/C (50 mg). The reaction mixture was stirred at 25 oC under hydrogen 

atmosphere for 12 h. The desired (11-1) was obtained through Celite filteration 

followed by evaporation of solvent under reduced pressure in good yield (25 mg, 

96 %).   

1H NMR (CD 3OD, 400 MHz): δ (ppm) [5.33 (s, 1H), 5.01 (s, 1H), 4.96 (s, 1H), 4.35 

(d, 1H, J = 8 Hz) CHanomeric)], 4.01-3.1 (m, 30H), 2.31-2.18 (m, 2H), 1.89-1.78 (m, 

2H), 1.84-1.53 (m, 4H). 

13 C NMR (CD3OD, 100 MHz): δ (ppm) [103.9, 102.9, 101.0, 98.7 (CHanomeric)], 79.2, 
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78.0, 77.6, 73.8, 73.8, 73.6, 71.8, 71.2, 70.7, 70.6, 70.5, 69.9, 69.1, 68.9, 68.0, 67.6, 

67.3, 62.1, 62.0, 61.3, 61.0, 26.4, 26.1. 

HRMS-MALDI (m/z):  [M+Na]+Calcd for C39H55F17NaO22 1221.2811; Found, 

1220.1206. 

 

Iterative synthesis of Leishmania-capping structures 

 

O
OBn
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BnO
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OAc

O

NH
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Synthesis of 3-(perfluorooctyl)propanyloxybutenyl-[2,3,4,6-tetra-O-benzyl-β-D-

galactopyranosyl-]-α-D-mannopyranoside 6-1.  

To a solution of 2,3,4,6-tetra-O-benzyl-β-D-galactopyranosyl-(1-4)-2-O-acetyl-3,6-

di-O-benzyl-α-D-mannopyranosyl trichloroacetimidate (6) (0.1 g, 0.09 mmol) and 3-

(perfluorooctyl)propanyloxybutenyl alcohol (7) (62 mg, 0.11 mmol) in dry toluene (3 

mL) was added TMSOTf (2 µL, 0.01 mmol) at 25 oC. The reaction mixture was 

stirred at room temperature for 10 min. The reaction was quenched with triethylamine 
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(0.01 mL) and concentrated under reduced pressure. The crude product was purified 

by solid phase extraction using fluoro flash column. Nonfluorous compounds were 

eluted with 5 mL 80 % MeOH/water and the desired product was eluted by 5 mL 100 % 

MeOH. The solvent was removed under reduced pressure to obtain the desired 

product (6-1) (0.13 g, 92 %).

Rf (ethyl acetate/haxane): 0.75 (20/80) 

1H NMR (CDCl 3, 400 MHz): δ (ppm) 7.30-7.17 (m, 30H), 5.75-5.65 (m, 2H), 5.29 (s, 

1H), 4.95 (d, 1H, J = 11.4 Hz), 4.82 (d, 1H, J = 11 Hz), 4.81 (d, 1H, J = <1 Hz), 4.70-

4.62 (m, 5H), 4.57-4.47 (m, 2H), 4.39 (d, 1H, J = 5.6 Hz), 4.36 (d, 1H, J = 5.2 Hz), 

4.24 (d, 1H, J = 11.8 Hz), 4.18 (d, 1H, J = 4.3 Hz), 4.10-4.06 (m, 2H), 4.01-4.00 (m, 

2H), 3.90-3.85 (m, 2H), 3.80 (d, 2H, J = 8.7 Hz), 3,72 (t, 2H, J = 8.1 Hz), 3.55 (t, 1H, 

J = 9 Hz), 3.43-3.32 (m, 5H), 2.20-2.03 (m, 2H), 1.95 (s, 3H), 1.85-1.78 (m, 2H).   

13 C NMR (CDCl3, 100 MHz): δ (ppm) 170.6 (C=O), [139.0, 138.9, 138.9, 138.5, 

138.5, 138.2 (Cq-Aryl)], 130.6, 128.5 – 127.3 (m, CH-Aryl), [103.1, 96.8 (CHanomeric)], 

82.0, 80.1, 76.3, 75.3, 74.8, 74.7, 73.7, 73.6, 73.3, 72.7, 72.2, 71.5, 69.6, 69.1, 69.9, 

68.9, 68.9, 66.6, 62.9, 28.2, 28.0, 21.1(CH3). 

HRMS-MALDI (m/z):  [M+Na]+Calcd for C71H71F17NaO13 1478.2783; Found, 
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1478.2483. 
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Synthesis of 3-(perfluorooctyl)propanyloxybutenyl-[2,3,4,6-tetra-O-benzyl-β-D-

galactopyranosyl-]-(1-4)-2-O-hydroxy-3,6-di-O-benzyl-α-D-mannopyranoside 9. 

To a solution of 3-(perfluorooctyl)propanyloxybutenyl-[2,3,4,6-tetra-O-benzyl-β-D-

galactopyranosyl-]-(1-4)-2-O-acetyl-3,6-di-O-benzyl-α-D-mannopyranoside (6-1) (0.1 

g, 0.07 mmol) in MeOH (3 mL) was added Na (1 mg, 0.07 mmol) and stirred at 25 oC 

for 30 min. The crude product was purified by solid phase extraction using fluoro 

flash column. Nonfluorous compounds were eluted with 5 mL 80 % MeOH/water and 

the desired product was eluted by 5 mL 100 % MeOH. The solvent was removed 

under reduced pressure to obtain the desired product (10) (95 mg, 98 %). 

Rf (ethyl acetate/haxane): 0.45 (25/75) 

1H NMR (CDCl 3, 400 MHz): δ (ppm) 7.34-7.21 (m, 30H), 5.76-5.67 (m, 2H), 4.98 

(d, 1H, J = 11.6 Hz), 4.91 (d, 1H, J = 11.6 Hz), 4.89 (d, 1H, J = <1 Hz), 4.82 (d, 1H, J 
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= 11.2 Hz), 4.75-4.69 (m, 3H), 4.63-4.50 (m, 3H), 4.43 (d, 1H , J = 10 Hz), 4.40-4.36 

(m, 2H), 4.28 (d, 1H, J = 11.6 Hz), 4.21 (dd, 1H, J = 12, 3.2 Hz), 4.13-4.07 (m, 2H), 

4.03-4.01 (m, 2H), 3.90 (d, 1H, J = 2.4 Hz), 3.79-3.69 (m, 5H), 3.58 (t, 1H, J = 8.8 

Hz), 3.46-3.37 (m, 5H), 2.21-2.08 (m, 2H), 1.85-1.79 (m, 2H).   

13 C NMR (CDCl3, 100 MHz): δ (ppm) [139.1, 138.9, 138.8, 138.6, 138.2 (Cq-Aryl)], 

130.5, 128.6 – 127.6 (m, CH-Aryl), [103.3, 98.3 (CHanomeric)], 82.8, 80.1, 78.2, 75.4, 

74.5, 73.7, 73.7, 73.3, 73.0, 72.8, 71.4, 69.5, 68.9, 68.9, 68.7, 66.7, 62.7, 28.2. 

HRMS-MALDI (m/z):  [M+Na]+Calcd for C69H69F17NaO12 1435.4415; Found, 

1435.3106.. 
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Synthesis of 3-(perfluorooctyl)propanyloxybutenyl-3,6-di-O-benzyl-4-O-[2,3,4,6-

tetra-O-benzyl-β-D-galactopyranosyl-]-2-O-[2-O-acetyl-3,4,6-tri-O-benzyl- α -D-
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mannopyranosyl]-α-D-mannopyranoside 10. 

To a solution of 3-(perfluorooctyl)propanyloxybutenyl-[2,3,4,6-tetra-O-benzyl-β-D-

galactopyranosyl-]-(1-4)-2-O-hydroxy-3,6-di-O-benzyl-α-D-mannopyranoside (9) (90 

mg, 0.06 mmol) and 2-O-acetyl-3,4,6-tri-O-benzylyl-α-D-mannopyranosyl 

tricholoroacetimidate (42 mg, 0.07 mmol) in dry toluene (3 mL) was added TMSOTf 

(2 µL, 0.01 mmol) at 25 oC. The reaction mixture was stirred at 25 oC for 10 min. The 

reaction was quenched with triethylamine (0.1 mL) and concentrated under reduced 

pressure. The crude product was purified by solid phase extraction using fluoro flash 

column. Nonfluorous compounds were eluted with 5 mL 80 % MeOH/water and the 

desired product was eluted by 5 mL 100 % MeOH. The solvent was removed under 

reduced pressure to obtain the desired product (10) (0.11 g, 89 %). 

Rf (ethyl acetate/haxane):  0.75 (20/80) 

1H NMR (CDCl 3, 400 MHz): δ (ppm) 7.31-7.29 (m, 45H), 5.64-5.61 (m, 2H), 5.50 

(dd, 1H, J = 2.8, 1.6 Hz), 5.05 (d, 1H, J = 1.2 Hz), 4.89 (d, 1H, J = 11.2 Hz), 4.83-

4.77 (m, 4H), 4.68 (d, 1H, J = 11.2 Hz), 4.64-4.57 (m, 5H), 4.53 (d, 1H, J = 5.6 Hz), 

4,51-4.45 (m, 3H), 4.42 (d, 1H, J = 7.6 Hz), 4.38 (d, 1H, J = 5.2 Hz), 4.33 (d, 1H, J = 

10.8 Hz), 4.29 (d, 1H, J = 12.4 Hz), 4.21 (d, 1H, J = 12 Hz), 4.16-4.12 (m, 1H), 4.06 
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(d, 1H, J = 8.8 Hz), 4.02-4.00 (m, 1H), 3.97-3.91 (m, 4H), 3.85-3.82 (m, 3H), 3.80 (d, 

1H, J = 9.6 Hz), 3.75-3.62 (m, 6H), 3.51 (t, 1H, J = 8.8 Hz), 3.44 (d, 1H, J = 2.8 Hz), 

3.41-3.29 (m, 4H), 2.17-2.01 (m, 2H), 2.04 (s, 3H), 1.81-1.75 (m, 2H).   

13 C NMR (CDCl3, 100 MHz): δ (ppm) 170.0 (C=O), [139.4, 139.2, 139.1, 138.9, 

138.7, 138.7, 138.5, 138.3 (Cq-Aryl)], 130.1, 128.6 – 127.1 (m, CH-Aryl), [103.5, 

99.7, 98.2 (CHanomeric)], 83.0, 80.3, 78.7m 78.2, 75.5, 87.4, 75.2, 74.8, 74.6, 73.7, 73.1, 

72.7, 72.7, 72.2, 72.1, 72.0, 69.5, 69.2, 68.9, 68.6, 68.4, 66.8, 62.9, 28.5, 28.3, 28.1, 

21.4.  

HRMS-MALDI (m/z):  [M+Na]+Calcd for C98H99F17NaO18 1909.6458; Found, 

1909.6699. 
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Synthesis of 3-(perfluorooctyl)propanyloxybutanyl-4-O-[β-D-galactopyranosyl]-

2-O-[2-O-α-D-mannopyranosyl]-α-D-mannopyranoside 10-1. 
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To a 3-(perfluorooctyl)propanyloxybutenyl-3,6-di-O-benzyl-4-O-[2,3,4,6,-tetra-O-

benzyl-β-D-galactopyranosyl-]-2-O-[2-O-acetyl-3,4,6-tri-O-benzyl-α-D-

mannopyranosyl]-α-D-mannopyranoside (10) (50 mg, 0.03 mmol) in MeOH (3 mL) 

was added Na (1 mg, 0.07 mmol) and stirred at 25 oC for 30 min. The reaction 

mixture was neutralized with Dowex-ion-exchange resin and filtered through Celite 

pad. purified by solid phase extraction using fluoro flash column. The solvent was 

removed under reduced pressure to obtain deacetylated product. To a sluotion of 

deacetylated product in MeOH (3mL) was added 10 % Pd/C (50 mg). The reaction 

mixture was stirred at 25 oC under hydrogen atmosphere for 12 h. The desired (10-1) 

was obtained through Celite filteration followed by evaporation of solvent under 

reduced pressure in good yield (26 mg, 95 %).   

1H NMR (D 2O, 400 MHz): δ (ppm) [4.95 (s, 1H), 4.87 (s, 1H), 4.29 (d, 1H, J = 8 Hz), 

CHanomeric)], 3.92-3.33 (m, 26H), 1,44-1,42 (m, 2H), 1.22-1.20 (m, 2H), 0.76-0.73 (m, 

2H). 

13 C NMR (CDCl3, 100 MHz): δ (ppm) [103.9, 102.8, 98.7 (CHanomeric)], 78.0, 77.7, 

75.7, 73.8, 73.6, 71.8, 71.8, 71.4, 71.1, 70.6, 70.5, 69.8, 69.0, 68.9, 67.6, 67.2, 61.8, 

61.2, 61.0, 60.2, 31.5, 27.6, 27.4,19.3. 13.0.  
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HRMS-MALDI (m/z):  [M+Na]+Calcd for C33H45F17NaO17 1059.2283; Found, 

1059.3657. 
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Synthesis of 1,2,3,4,6-penta-O-acetyl-D-mannopyranoside 

To a solution of monnose (1 g, 5.6 mmol) in acetic anhydride (5 mL) was added 

catalytic amount of  iodine (50 mg, 0.2 mmol) at 25 oC. The reaction mixture was 

stirred at room temperature for 1 h. The dark brown reaction mixture was poured into 

a separatory funnel containing dichloromethane, aqueous sodium thiosulfate solution 

and crushed ice. The colorless solution from a separatory funnel was washed with 

H2O (2 x 50 mL) and sat.NaHCO3 (2 x 50 mL). It was dried with Na2SO4 and then 

concentrated under reduced vacuum to obtain the desired product 1 with quantitative 

yield. 
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Synthesis of 3,4,6-tri-O-acetyl-1,2-O-(1-methoxyethylidiene)-α-D- 

mannopyranoside 

To a solution of 1,2,3,4,6-penta-O-acetyl-D-mannopyranoside (2.2 g, 5.6 mmol) in 

dichloromethane was added HBr (10 mL) for 10 min . The reaction mixture was 

stirred at 25 oC for 1 h and then checked TLC to check the completion of reaction. 

After completion of reaction, the mixture was washed with cold water three times and 

then followed by washed with saturated sodium bicarbonate solution three times. The 

neutralized solution was dried with sodium sulfate and concentrated under reduced 

pressure. The crude product was used for next step without further purification. To a 

solution of hepta-acetyl lactosyl bromide in dichloromethane was added triethylamine 

(1.6 mL, 11.2 mmol), Bu4NBr (2.0 g, 6.2 mmol) and methanol (0.2 mL, 6.7 mmol). 

The reaction mixture was stirred at 40 oC for 16 h and then washed with H2O (1 x 50 

mL). The solution was dried with Na2SO4 and then concentrated under reduced 

vacuum.  The crude produce was purified to obtain the desired product (1.56 g, 78 % 

over 3 steps) by silica column chromatography.   
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Synthesis of 3,4,6-tri-O-benzyl-1,2-O-(1-methoxyethylidiene)-α-D- 

mannopyranoside 

To a solution of 3,4,6-tri-O-acetyl-1,2-O-(1-methoxyethylidiene)-α-D-

mannopyranoside (1g, 2.8 mmol) in MeOH (5 mL) was added catalytic amount of Na 

(10 mg, 0.4 mmol) . The reaction mixture was stirred at 25 oC for 2 h and then 

concentrated under reduced vacuum to yield the crude deacetylated product as yellow 

foam. To a solution of deacetylated product in DMF (10 mL) was added 60 % NaH in 

mineral oil  (1.33g, 11.2 mmol), followed by addition of benzyl bromide (1.31 mL, 

11.2 mmol) and tetrabuyl ammonium iodide (31 mg, 0.08 mmol) at 0 oC. The reaction 

mixture was warmed up to 25 oC and stirred for 12 h.  The reaction mixture was 

diluted with dichloromethane (50 mL) and then washed with H2O (2 x 50mL). The 

organic layer was dried with Na2SO4 and concentrated under reduced vacuum. The 

crude product was purified by flash silica column chromatography to afford the 

desired product (1.28 g, 92 %).  
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Synthesis of 2-O-acetyl-3,4,6-tri-O-benzylyl-αααα-D-mannopyranosyl  

tricholoroacetimidate 8 16 

3,4,6-Tri-O-benzyl-1,2-O-(1-methoxyethylidiene)-α-D-mannopyranoside (1g, 2 

mmol) was dissolved in 80 % acetic acid (10 mL) and stirred at 25 oC for 30 min. The 

reaction mixture was diluted with dichloromethane (20 mL) and washed with H2O (3 

x 20 mL) followed by with sat.NaHCO3 (1 x 20 mL). The solution was dried with 

Na2SO4 and concentrated under reduced pressure. To a crude residue in 

dichloromethane was added Cs2CO3 (0.32 g, 1 mmol) and followed by addition of 

trichloroacetonitrile (0.4 mL, 4 mmol) at 0 oC. The reaction mixture was stirred at 0 

oC for 30 min and then concentrated under reduced pressure. The crude residue was 

dried with Na2SO4 and purified by flash silica column chromatography to afford the 

desired product (8) (1.15 g, 92 %). 
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Synthesis of 3-(Perfluorooctyl)propanyloxybutenyl-2-O-acetyl-3,4,6-tri-O-benzyl-

αααα-D-mannopyranoside 12.21 

To a solution of 2-O-acetyl-3,4,6-tri-O-benzylyl-α-D-mannopyranosyl 

tricholoroacetimidate (8) (0.3 g, 0.47 mmol) and 3-

(perfluorooctyl)propanyloxybutenyl alcohol (2) (0.13 g, 0.24 mmol) in dry 

dichloroethane (5 mL) was added TMSOTf (8.5 µL, 0.05 mmol) at 25 oC. The 

reaction mixture was stirred at room temperature for 30 min. The reaction was 

quenched with triethylamine (0.5 mL) and concentrated under reduced pressure. The 

crude product was purified by solid phase extraction using fluoro flash column. 

Nonfluorous compounds were eluted with 5 mL 80 % MeOH/water and the desired 

product was eluted by 5 mL 100 % MeOH. The solvent was removed under reduced 

pressure to obtain the desired product (12) (0.20 g, 84 %).  
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Synthesis of 3-(Perfluorooctyl)propanyloxybutenyl-3,4,6-tri-O-benzyl-2-O-(2-O-

acetyl-3,4,6-tri-O-benzyl-αααα-D-mannopyranosyl)- αααα-D-mannopyranoside 1321. 

To a solution of 3-(perfluorooctyl)propanyloxybutenyl-2-O-acetyl-3,4,6-O-benzyl- 

α-D-mannopyranoside (12) (0.2 g, 0.2 mmol) in MeOH (5 mL) was added Na (4 mg, 

0.2 mmol) and stirred at 25 oC for 30 min. The crude product was purified by solid 

phase extraction using fluoro flash column. Nonfluorous compounds were eluted with 

5 mL 80 % MeOH/water and the desired product was eluted by 5 mL 100 % MeOH. 

The solvent was removed under reduced pressure to obtain the desired product (0.18 g, 

94 %). To a solution of 3-(perfluorooctyl)propanyloxybutenyl-3,4,6-O-benzyl-α-D-

mannopyranoside (0.18g, 0.19 mmol) and of 2-O-acetyl-3,4,6-tri-O-benzylyl-α-D-

mannopyranosyl tricholoroacetimidate (0.13 g, 0.21 mmol) in toluene (5 mL) was 

added TMSOTf (2 µL, 0.11 mmol) at 25 oC. The reaction mixture was stirred at 25 oC 

for 10 min. The reaction was quenched with triethylamine (30 µL) and concentrated 

under reduced pressure. The crude product was purified by solid phase extraction 

using fluoro flash column. Nonfluorous compounds were eluted with 5 mL 80 % 

MeOH/H2O and the desired product was eluted by 5 mL 100 % MeOH. The solvent 

was removed under reduced pressure to obtain the desired product (13) (0.23 g, 86 %). 
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Synthesis of 3-(Perfluorooctyl)propanyloxybutenyl-3,4,6-O-benzyl-2-O-[2-O-(2-

O-acetyl-3,4,6-tri-O-benzyl-αααα-D-mannopyranosyl)-3,4,6-tri-O-benzyl-αααα-D-

mannopyranosyl]- αααα-D-mannopyranoside 14.21 

To a solution of 3-(perfluorooctyl)propanyloxybutenyl-3,4,6-tri-O-benzyl-2-O-(2-O-

acetyl-3,4,6-tri-O-benzyl-α-D-mannopyranosyl)-α-D-mannopyranoside (13) (0.2g, 

0.14 mmol) in MeOH (5 mL) was added Na (3 mg, 0.14 mmol) and stirred at 25 oC 

for 30 min. The crude product was purified by solid phase extraction using fluoro 

flash column. Nonfluorous compounds were eluted with 5 mL 80 % MeOH/water and 

the desired product was eluted by 5 mL 100 % MeOH. The solvent was removed 

under reduced pressure to obtain the desired product (0.18 g, 92 %) 
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To a solution of 3-(perfluorooctyl)propanyloxybutenyl-3,4,6-O-benzyl-α-D-

mannopyranosyl-(1-2)-3,4,6-O-benzyl- α-D-mannopyranoside (0.18 g, 0.13 mmol) 

and 2-O-acetyl-3,4,6-tri-O-benzylyl-α-D-mannopyranosyl tricholoroacetimidate (91 

mg, 0.14 mmol) in toluene (5 mL) was added TMSOTf (2 µL, 0.11 mmol) at 25 oC. 

The reaction mixture was stirred at 25 oC for 30 min. The reaction was quenched with 

triethylamine (30 µL) and concentrated under reduced pressure. The crude product 

was purified by solid phase extraction using fluoro flash column. Nonfluorous 

compounds were eluted with 5 mL 80 % MeOH/H2O and the desired product was 

eluted by 5 mL 100 % MeOH. The solvent was removed under reduced pressure to 

obtain the desired product (14) (0.21 g, 86 %). 
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Synthesis of 3-(perfluorooctyl)propanyloxybutanyl--2-O-(2-O-α-D- 

mannopyranosyl)-α-D-mannopyranoside 13-1. 
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To a 3-(perfluorooctyl)propanyloxybutenyl-3,4,6-tri-O-benzyl-2-O-(2-O-acetyl-

3,4,6-tri-O-benzyl-α-D-mannopyranosyl)- α-D-mannopyranoside (13) (50 mg, 0.03 

mmol) in MeOH (3 mL) was added Na (1 mg, 0.07 mmol) and stirred at 25 oC for 30 

min. The reaction mixture was neutralized with Dowex-ion-exchange resin and 

filtered through Celite pad. purified by solid phase extraction using fluoro flash 

column. The solvent was removed under reduced pressure to obtain deacetylated 

product. To a sluotion of deacetylated product in MeOH (3mL) was added 10 % Pd/C 

(50 mg). The reaction mixture was stirred at 25 oC under hydrogen atmosphere for 12 

h. The desired (13-1) was obtained through Celite filteration followed by evaporation 

of solvent under reduced pressure in good yield (29 mg, 95 %).   

1H NMR (CD 3OD, 400 MHz): δ (ppm) [5.06 (s, 1H), 4.96 (s, 1H) CHanomeric)], 3.81-

3.31 (m, 22H), 2.30-2.18 (m, 2H), 1.87-1.76 (m, 2H), 1.68-1.60 (m, 2H). 

13 C NMR (CD3OD, 100 MHz): δ (ppm) [103.0, 98.7 (CHanomeric)], 79.5, 73.8, 73.4, 

71.2, 71.0, 70.6, 68.9, 67.8, 67.6, 67.1, 61.9, 61.8, 60.2, 27.8, 27.6, 26.4, 26.1. 

HRMS-MALDI (m/z):  [M+Na]+Calcd for C27H35F17NaO12 897.1289; Found, 

897.1755. 
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Synthesis of 3-(perfluorooctyl)propanyloxybutanyl-2-O-[2-O-(2-O-α-D- 

mannopyranosyl)-α-D-mannopyranosyl]-α-D-mannopyranoside 14-1.  

To a 3-(perfluorooctyl)propanyloxybutenyl-3,4,6-O-benzyl-2-O-[2-O-(2-O-acetyl-

3,4,6-tri-O-benzyl-α-D-mannopyranosyl)-3,4,6-tri-O-benzyl-α-D-mannopyranosyl]- 

α-D-mannopyranoside (14) (50 mg, 0.03 mmol) in MeOH (3 mL) was added Na (1 

mg, 0.07 mmol) and stirred at 25 oC for 30 min. The reaction mixture was neutralized 

with Dowex-ion-exchange resin and filtered through Celite pad. purified by solid 

phase extraction using fluoro flash column. The solvent was removed under reduced 

pressure to obtain deacetylated product. To a sluotion of deacetylated product in 

MeOH (3mL) was added 10 % Pd/C (50 mg). The reaction mixture was stirred at 25 

oC under hydrogen atmosphere for 12 h. The desired (14-1) was obtained through 
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Celite filteration followed by evaporation of solvent under reduced pressure in good 

yield (26 mg, 93 %).   

1H NMR (CD 3OD, 400 MHz): δ (ppm) [5.27 (s, 1H), 5.06 (s, 1H), 4.97 (s, 1H) 

CHanomeric)], 4.02-3.03 (m, 29H), 2.31-2.17 (m, 1H), 1.87-1.76 (m, 2H), 1.58-1.51 (m, 

1H), 1.43-1.35(m, 1H).  

13 C NMR (CD3OD, 100 MHz): δ (ppm) [102.9, 101.3, 98.6 (CHanomeric)], 79.7, 79.1, 

73.8, 71.2, 71.0, 70.7, 70.5, 68.9, 68.0, 67.8, 67.6, 67.1, 62.1, 62.0, 61.8, 27.6, 27.4, 

26.4, 26.1.  

HRMS-MALDI (m/z):  [M+Na]+Calcd for C33H45F17NaO17 1059.2283; Found, 

1059.1600. 
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Synthesis of 3-(perfluorooctyl)propanyloxybutanyl-β-D-galactopyranoside 1522. 

To a solution of 3-(perfluorooctyl)propanyloxybutenyl-2,3,4,6-tetra-O-acetyl-β-D-

galactopyranoside22 (50 mg, 0.06 mmol) in MeOH (3 mL) was added Na (2 mg, 0.14 
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mmol) and stirred at 25 oC for 2 h. The reaction mixture was neutralized with Dowex-

ion-exchange resin. The desired (15) was obtained through Celite filteration followed 

by evaporation of solvent under reduced pressure in good yield (39 mg, 97 %).  

1H NMR (CD 3OD, 400 MHz): δ (ppm) 4.21 (s, 1H, J = 7.6 Hz CHanomeric), 3.92-3.45 

(m, 12H), 2.31-2.18 (m, 2H), 1.87-1.80 (m, 2H), 1.72-1.63 (m, 4H). 

13 C NMR (CD3OD, 100 MHz): δ (ppm) 103.7 (CHanomeric), 75.4, 73.8, 71.3, 70.5, 

69.2, 69.0, 68.8, 61.2, 26.3, 26.1.  

HRMS-ESI (m/z): [M+Na]+Calcd for C21H25F17NaO7 735.1227; Found, 735.1095. 
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Synthesis of 3-(perfluorooctyl)propanyloxybutanyl-4-O-β-D-galactopyranosyl)-β-

D-glucopyranoside 16.22 

To a solution of 3-(perfluorooctyl)propanyloxybutenyl-4-O-(2,3,4,6-tetra-O-acetyl-

β-D-galactopyranosyl)-2,3,6-tri-O-acetyl-β-D-glucopyranoside22 (50 mg, 0.04 mmol) 

in MeOH (3 mL) was added Na (3 mg, 0.21 mmol) and stirred at 25 oC for 4 h. The 
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reaction mixture was neutralized with Dowex-ion-exchange resin. The desired (16) 

was obtained through Celite filteration followed by evaporation of solvent under 

reduced pressure in good yield (36 mg, 96 %).  

1H NMR (CD 3OD, 400 MHz): δ (ppm) [4.77 (d, 1H, J = 3.6 Hz), 4.34 (s, 1H, J = 7.6 

Hz) CHanomeric], 3.76-3.69 (m, 9H), 3.51-3.48 (m, 11H), 2.32-2.18 (m, 2H), 1.88-1.81 

(m, 2H), 1.72-1.63 (m, 2H). 

13 C NMR (CD3OD, 100 MHz): δ (ppm) [103.8, 98.7 (CHanomeric)], 79.7, 75.9, 73.6, 

72.3, 72.3, 72.0, 71.3, 70.9, 70.5, 69.1, 68.9, 67.7, 61.3, 60.6, 26.4, 26.1.  

HRMS-ESI (m/z): [M+Na]+Calcd for C27H35F17NaO12 897.1755; Found, 897.1510. 
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CHAPTER 4 

Development of automated synthesis and screening of phosphate-linked 

Leishmania-associated carbohydrates 

Eun-Ho Song and Nicola L. Pohl 

 

Introduction 

Since fluorous-based automation platform became a reliable tool for automated 

synthesis of oligosaccharides,1automated synthesis of phosphoglycans becomes a 

challenge due to its unique phosphate-linked structure and function. Unlike 

glycosylation and deacetylation for the construction of oligosaccharide in an 

automation platform, forming phosphate-linkage requires three steps; coupling, 

oxidation and deprotection.  

In order to extend the versatility of fluorous-based automation platform, we 

examined its application for the synthesis of phophoglycan repeats in Leishmania 

surface glycolipid, lipophosphoglycan (LPG).  

The role of lipophosphoglycan (LPG) in parasite virulence has been intensively 

reported in the field of parasite biology due to its importance during macrophage 
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infection.2 Nevertheless, their role in parasite virulence is controversial issue.3, 4 But, 

now there is no longer any doubt that Leishmania cannot survive in sand flies and 

macrophages without LPG.5, 6  

As shown in figure 1, the structure of LPG has been characterized by mass 

spectrometry and NMR spectroscopy.7, 8 Phsphoglycan repeats are the most abundant 

Leishmania-surface molecules in LPG due to difference in the length distribution 

among three domains. Moreover, each species has unique structure of phosphoglycan 

repeats in LPG. For example, L. donovani PGs consists of linear [-6Galp-β1,4-

Manp-α1-phosphate]navg.=12 repeats and L. major PGs consists of branched [6-(Gal-

β1,3)-Galp-β1,4- Manp-α1-phosphate] navg.=27 repeats.  

Although there have been several studies made on the identification of 

phosphoglycan repeats functions such as part of epitopes for recognition by 

macrophage receptors and playing a key role in parasite survival early in the sand fly,9 

these studies were not performed with pure phosphoglycan repeats due to the 

impossibility to obtain pure phosphoglycan repeats from LPG. Thus, we can only 

assume that PGs might play a crucial role in parasite virulence. While there has been 
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increasing interest in the study of PGs function, specific study has been restricted due 

to the limited access to pure synthesized PGs. 

 

CAP PHOSPHOGLYCAN REPEATS GPI ANCHORO P
O

O
O-

O P
O

O
O-

O
HO

HO
OH

OO
HO

O

HOO

*

n

OH

O
HO

HO
OH

OO
HO

O

HOOH O

OHO
HO

HO OH

*

 Figure 1. Structure of the lipophosphoglycan of Leishmania donovani. 

 

Interestingly, capping structures are also linked to phosphoglycan repeats through 

phosphate. Like capping structure, phosphate groups might serve as distinct epitopes 

and profoundly affect antibody binding. Given this thought, it can be hypothesized 

that phosphate-linkages are involved in synergistic antibody bindings. Fluorous-based 

microarray10 can also be used to demonstrate the effect of phosphate-linkages in 

antibody bindings.  

 In this regard, rapid and efficient chemical synthesis for the construction of 

Leishmania phosphoglycan repeats and phosphate-linked capping structures has been 

prerequisite due to its biological interests for unveiling PGs and phosphate specific 
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functions in parasite virulence and their potential role in immunomodulation for 

vaccine development.   

Several attempts for both chemical synthesis of L. donovani PGs11-13 and L. major 

PGs14-16 have been made through either using monosaccharide building blocks 

(galactose and mannose) with multiple steps for protection, deprotection, and 

glycosylation or disaccharide building block. In the study which used disaccharide 

building block, iterative synthesis of PGs has been achieved by solid-phase11, but the 

use of automation platform for synthesis of PGs has never been reported. Unlike 

oligonucleotide and peptides synthesis via a synthesizer, phosphate-linked 

oligosaccharides such as phosphoglycan have never been synthesized by using an 

automation platform due to the difficulty of managing anomeric stereochemistry and 

instability of the anomeric phosphodiester. In order to overcome these limitations, we 

focused on the development of synthetic methods under H-phosphonate chemistry17 

and it led to the discovery of an efficient method for the synthesis of phosphate-linked 

oligosaccharides. 



www.manaraa.com

90 

Herein, we reported the first fluorous-based automated synthesis of linear 

phosphoglycan repeats for L. donovani and phosphate-linked Leishmania-associated 

capping structures through a H-phosphonate strategy.  

 

Results and discussion 

Synthesis of L. donovani phosphoglycan building block 

A known intermediate orthoester18 served as starting material for the synthesis of 

phosphoglycan donor (Scheme 1). According to the conditions previously developed 

by Ruhela et al.11, regioselective silylation of 6-position of galactose on orthester was 

performed by using Bu3Sn/MeOH and TBDPSCl in reasonably high yield (80 % 3 

steps). Subsequence benzylation gave the benzylated orthoester 1 in 85 % respectively. 

Lewis acid-mediated allylation by using allyl alcohol and TfOH was followed by 

reaction with NaOMe to yield 2-O-unprotected disaccharide 2 in high yield (82% over 

2 steps). With 2-O-unprotected disaccharide 2, conversion of β-glucoside 2 to α-

mannoside 3 was successively accomplished under a two-step oxidation-reduction 

process by using Dess-Martin periodate and subsequence reduction with NaBH4. 



www.manaraa.com

91 

Further protection of 2-O-unprotected disaccharide 3 with Piv-Cl gave fully protected 

disaccharide 5 in 91 % respectively.  
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Scheme 1. Synthesis of L. donovani phosphoglycan building block 

 

Iridium-catalyzed isomerization19 of allyl ether 4 was carried out in order to give 

trans-propenyl ether 5 and then free anomeric-OH was introduced under non-acidic 

conditions20 using HgO/HgCl2 to furnish pure α-hemiacetal product in 91 % 

respectively after removal of β-hemiacetal product through silica column purification.  
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Scheme 2. Synthesis of L. donovani phosphoglycan donor 

 

PCl3/imidazole reagent21 has been widely used as phosphonylating agent for 

formation of H-phosphonate monoester in carbohydrate due to its high reactivity. 

However, phsphonylation using PCl3/imidazole requires not only laborious 

experimental procedure but also very careful handling of PCl3 which is classified very 

toxic and corrosive by EPA.  

Instead of using PCl3/imidazole, phosphorous acid/Piv-Cl system enabled us to 

accomplish phsphonylation of 6 in good yield (83 %) though pivaloyl chloride-

mediated coupling reaction22. H-phposphonate donor 6 was confirmed by unique large 

coupling constant of 31P-1H (doublet, JHP= 632.4 Hz in 1H NMR), 31P NMR (1.31 

ppm) and HRMS ([M+Na]+Calcd 1177.4898; Found 1177.0978 ). 
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Scheme 3. Synthesis of L. donovani phosphoglycan 

 

  In order to optimize conditions for the synthesis of phosphodiester prior to run 

synthesizer, another pivaloyl chloride mediated coupling reaction for the introduction 

of fluorous-tag was followed by oxidation23 with iodine in aqueous pyridine to furnish 

fluorous-tagged β-D-galactopyranosyl-(1→4)-α-D-mannopyranosyl 

phosphodiester 7 in 87 % yield.  

 

Automated synthesis of L. donovani phosphoglycan repeats. 

   The automated synthesis of L. donovani phosphoglycan repeats was designed to 

carry out 2 and 2/3 cycles including 3 x coupling for the enlogation of disaccharide 

repeat, 3 x oxidation for the transformation of phosphite to phosphate, 2 x desilylation 

for the deprotection of TBDPS group and 5 x FSPE for the purification of crude 

product (Scheme 4). Each reaction cycle was programmed to use only 2 equivalent of 
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H-phposphonate donor 6 PIv-Cl, iodine and TBAF. As expected, the use of TLC in 

monitoring reactions enabled us to confirm the completion of each step of the reaction 

during running synthesizer. After 2.5 automation cycles, 23 mg of crude hexa-

phosphoglycan repeats with high purity was obtained from automation platform 

without further purification. With conventional purification with prep TLC, 19 mg of 

pure product was provided in overall 10 % yield (75 % per step).   
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Scheme 4. Automated synthesis of L. donovani phosphoglycan repeats 
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Synthesis of phosphate-linked Leishmania-associated capping structures 

 

OH

OC8F17

OHNEt3

PO H

O

OC8F17

H3PO3, Piv-Cl

Pyridine, Et3N, 82 % 9

Scheme 5. Synthesis of H-phosphonate fluorous-tagged alcohol. 

 

α-Hemiacetal products of Leishmania-associated capping structures were prepared 

as reported in previous study.24 Pivaloyl chloride mediated coupling reaction 

underwent efficiently to produce H-phosphonate fluorous-tagged alcohol 9 in good 

yields (82 %). Subsequent coupling reaction of H-phosphonate fluorous-tagged 

alcohol using phosphorous acid/Piv-Cl with α-hemiacetal intermediates followed by 

oxidation with iodine in aqueous pyridine resulted in the production of fluorous-

tagged Leishmania capping phosphodiesters in good yields (81 % ~ 89 %).  
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Figure 2. Phosphate-linked Leishmania-associated capping structures. 

 

Conclusion 

In conclusion, the first automated synthesis of L. donovani phosphoglycan repeats 

demonstrated that phosphate-linked oligosaccharide can be readily available in the 
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newly developed fluorous-based automation platform within a short period, with low 

cost and less laborious work. More importantly, the synthesis of phosphate-linked 

Leishmania-associated capping structures for L. donovani and L. major has led to 

advances in understanding of the role of phosphate in antibody bindings. The study 

for the detection of glycolipid specific antibodies in serum from Leishmania infected 

animals using phosphate-linked Leishmania-associated capping structures will be 

exploited.  

 

Experimental section 

General methods 

Solvents were reagent grade and in most cases dried prior to use. All other 

commercially available reagents were used as received unless otherwise noted. The 

organic extracts were dried over anhydrous MgSO
4
. Tetrahydrofuran (THF) was 

distilled from lithium aluminum hydride (LiAlH
4
) prior to use. Methylene chloride 

(CH
2
Cl

2
), and triethylamine (Et

3
N) were distilled from calcium hydride. Diethyl ether 

(Et
2
O) was distilled from sodium-benzophenone ketyl.  

  1H and 13C NMR spectra were obtained at 400 MHz and 100 MHz on Varian VXR-
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400 NMR or on Bruker DRX-400 NMR. Mass spectra (MS) were recorded on an 

Applied Biosytems DE-Pro MALDI mass analyzer or an Applied Biosytems 

QSTAR® XL Hybrid LC/MS/MS System. Chemical shifts are reported in parts per 

million downfield relative to tetramethylsilane (δ 0.00) and coupling constants are 

reported in Hertz (Hz). The following abbreviations are used for the multiplicities: s = 

singlet; d = doublet; t = triplet; q = quartet; m = multiplet; and br = broad.   
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Synthesis of 2,3,4-Tri-O-benzyl-6-O-(tert-butyldiphenylsilyl)-β-D- 

galactopyranosyl-(1-4)-3,6-di-O-benzyl-1,2-O-(1-methoxyethylidiene)-β-D-

glucopyranoside 1. 

  To a solution of 2,3,4,6,-tetra-O-acetyl-β-D-galactopyranosyl-(1-4)-3,6-di-O-

acetyl-1,2-O-(1-methoxyethylidiene)-β-D-glucopyranoside18 (2 g, 3.1 mmol) in 

MeOH (10 mL) was added catalytic amount of Na (140 mg, 6.2 mmol). The reaction 
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mixture was stirred at 25 oC for 3 h and then was filtered through a Celite pad. The 

crude deacetylated product as yellow foam was obtained after concentration of 

reaction mixture under reduced vacuum. To a solution of deacetylated product in 

anhydrous MeOH (20 mL) was added Bu2SnO (0.77 g, 3.1 mmol) and then the 

reaction mixture was heated to reflux for 4 h followed by evaporation of solvent. To a 

solution of a dibutyltin compound in anhydrous THF was added TBDPSCl (0.72 mL, 

3.1 mL) and then the reaction mixture was stirred at 25 oC for 48 h. The solvent was 

concentrated under reduced vacuum. The crude product was purified by flash silica 

column chromatography (3 % MeOH in DCM) to afford the desired product 2,3,4-tri-

O-hydroxy-6-O-(tert-butyldiphenylsilyl)-β-D-galactopyranosyl-(1-4)-3,6-di-O-

hydroxy-β-D-glucopyranoside (1.88 g, 80 % over 2 steps). To a solution of TBDPS-

protected product (1.88 g, 3.0 mmol) in DMF (10 mL) was added 60 % NaH (0.99 g, 

30 mmol), followed by addition of benzyl bromide (3.5 mL, 30 mmol) and 

tetrabuylammonium iodide (1.1 g, 3.0 mmol) at 0 oC. The reaction mixture was 

warmed up to 25 oC and stirred for 12 h. The reaction mixture was diluted with 

dichloromethane (20 mL) and then washed with H2O (2 x 20mL). The organic layer 

was dried with Na2SO4 and concentrated under reduced vacuum. The crude product 
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was purified by flash silica column chromatography to afford the desired product 1 

(2.73 g, 85 % over 2 steps).  

Rf (ethyl acetate/haxane):  0.83 (25/75) 

1H NMR (CDCl 3, 400 MHz): δ (ppm) 7.54-7.07 (m, 35H), 5.67 (d, 1H, J = 5.2 Hz), 

5.00 (d, 1H, J = 9.6 Hz), 4.85-4.77 (m, 4H), 4.63 (d, 1H, J = 16 Hz), 4.59 (d, 1H, J = 

15.2 Hz), 4.55 (d, 1H, J = 12.8 Hz), 4.40 (t, 1H, J = 11.2 Hz), 4.27 (m, 1H), 4.18 (d, 

1H, J = 8 Hz), 4.03 (br, 1H), 3.95-3.86 (m, 3H), 3.75-3.58 (m, 5H), 3.72 (dd, 1H, J = 

8.8, 2.4 Hz), 3.28-3.25 (m, 1H), 3.22 (s, 3H), 1.54 (s, 3H), 1,02 (s, 9H). 

13 C NMR (CDCl3, 100 MHz): δ (ppm) [139.3, 139.1, 138.9, 138.7, 138.3 (Cq-Aryl)], 

[130.2-127.8 (m, CH-Aryl)] 135.8, 135.7, [105.6, 97.8 (CHanomeric)], 82.3, 79.7, 75.3, 

74.9, 74.3, 73.4, 72.1, 70.3, 69.4, 62.0, 51.2, 27.3, 20.6, 19.5. 

HRMS-MALDI (m/z):  [M+Na]+Calcd for C66H74NaO12Si, 1109.4847; Found, 

1109.6400. 
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Synthesis of Allyl O-(2,3,4-tetra-O-benzyl-6-O-(tert-butyldiphenylsilyl)-β-D-

galactopyranosyl)-(1-4)-3,6-di-O-benzyl-2-O-hydroxy-β-D-glucopyranoside 2. 

A solution of 2,3,4-Tri-O-benzyl-6-O-(tert-butyldiphenylsilyl)-β-D-

galactopyranosyl-(1-4)-3,6-di-O-benzyl-1,2-O-(1-methoxyethylidiene)-β-D-

glucopyranoside 1 (2 g, 1.8 mmol) and ally alcohol (1.25 mL, 18 mmol) in 

dichloromethane (10 mL) was cooled to  – 40 oC  and TfOH (10 µL, 0.12 mmol) 

was added dropwise over 10 min. The reaction mixture was stirred at – 40 oC for 30 

min and allowed to 25 oC for 1 h followed by addition of triethylamine to neutralize a 

solution. The crude product was obtained after concentration of solvent under reduced 

vacuum. To a crude product in MeOH was added Na (41 mg, 1.8 mmol). The reaction 

mixture was stirred at 25 oC for 1 h and then concentrated under reduced vacuum.  

The crude product was purified by flash silica column chromatography to afford the 

desired product 2 (1.62 g, 82 % over 2 steps).   

Rf (ethyl acetate/haxane):  0.50 (25/75) 

1H NMR (CDCl 3, 400 MHz): δ (ppm) 7.56-6.98 (m, 35H), 5.98-5.88 (m, 1H), 5.32 

(dd, 1H, J = 17.2, 1.6 Hz), 5.21 (dd, 1H, J = 10.4, 1.2 Hz), 5.07 (d, 1H, J = 11.2 Hz), 

5.02 (d, 1H, J = 10.8 Hz), 4.81-4.73 (m, 3H), 4.60-4.54 (m, 3H), 4.39-4.30 (m, 4H), 
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4.13 (dd, 1H, J = 12.8, 6.4 Hz), 4.01 (d, 1H, J = 2.8 Hz), 3.88 (t, 1H, J = 9.2 Hz), 3.86 

(d, 1H, J = 12 Hz), 3.81-3.64 (m, 4H), 3.446-3.44 (m, 1H), 3.41-3.33 (m, 3H), 3.24 

(dd, 1H, J = 9.2, 5.2 Hz), 1.03 (s, 9H).  

13 C NMR (CDCl3, 100 MHz): δ (ppm) [139.2, 138.9, 138.7, 138.6, 138.4 (Cq-Aryl)], 

135.5, 134.0, 133.2, [129.8-127.1 (m, CH-Aryl)], 117.8, [102.7, 101.5 (CHanomeric)], 

82.8, 82.4, 80.2, 77.4, 76.8, 76.1, 75.5, 75.3, 74.9, 74.3, 73.7, 73.2, 70.0, 68.1, 61.3, 

27.0, 19.2. 

HRMS-MALDI (m/z):  [M+Na]+Calcd for C66H74NaO11Si, 1093.4898; Found, 

1093.4898. 

O
OTBDPS

BnO

BnO

BnO

O

BnO

BnO
HO

O
O

O
OTBDPS

BnO

BnO

BnO

O

BnO

BnO
O

O

OH

Synthesis of Allyl O-(2,3,4-tetra-O-benzyl-6-O-(tert-butyldiphenylsilyl)-β-D-

galactopyranosyl)-(1-4)-3,6-di-O-benzyl-2-O-hydroxy-β-D-mannopyranoside 3. 

To a solution of allyl O-(2,3,4-tetra-O-benzyl-6-O-(tert-butyldiphenylsilyl)-β-D-

galactopyranosyl)-(1-4)-3,6-di-O-benzyl-2-O-hydroxy-β-D-glucopyranoside 2 (1.5 g, 

0.14 mmol) in dichloromethane (10 mL) was added dess-martin periodinane (1.2 g, 

0.28 mmol). The reaction mixture was stirred at 35 oC for 4 h and then diluted with 
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dichloromethane (10 mL). The diluted solution was washed with sat.NaHCO3 (2 x 5 

mL), H2O (1 x 5 mL), and brine (1 x 5 mL). The organic layer was dried with Na2SO4 

and then concentrated under reduced vacuum. The crude residue was dissolved in 

dichloromethane/MeOH (1/1) and cooled to 0 oC.  NaBH4 (0.11 mg, 0.28 mmol) was 

added and then the reaction mixture was allowed to 25 oC over 1 h. The mixture was 

diluted with dichloromethane (10 mL) and washed with H2O (1 x 5 mL), 1 % aqueous 

citric acid (1 x 5 mL) and brine (1 x 5 mL). The solvent was evaporated under 

reduced vacuum and dried with Na2SO4. The crude product was purified by flash 

silica column chromatography to afford the desired product 3 (1.29 g, 86 % over 2 

steps).  

Rf (ethyl acetate/haxane): 0.47 (25/75)  

1H NMR (CDCl 3, 400 MHz): δ (ppm) 7.57-7.06 (m, 35H), 5.94-5.84 (m, 1H), 5.27 

(dd, 1H, J = 17.2, 1.6 Hz), 5.18 (dd, 1H, J = 10.4, 1.2 Hz), 5.05 (d, 1H, J = 11.2 Hz), 

4.79-4.74 (m, 4H), 4.70 (d, 1H, J = 12 Hz), 4.63 (d, 1H, J = 15.6 Hz), 4.59 (d, 1H, J = 

12 v), 4.51 (d, 1H, J = 12 v), 4.45 (d, 1Hanomeric, J = 0.8 Hz), 4.40-4.35 (m, 2H), 4.39 

(d, 1Hanomeric, J = 8 Hz), 4.08-3.98 (m, 4H), 3.86 (t, 1H, J = 9.2 Hz), 3.79-3.71 (m, 4H), 

3.48-3.40 (m, 3H), 3.29 (dd, 1H, J = 8.8, 5.2 Hz), 1.01 (s, 9H). 
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13 C NMR (CDCl3, 100 MHz): δ (ppm) [139.2, 138.8, 138.6, 138.5, 138.4 (Cq-Aryl)], 

135.5, 133.9, 133.2, [129.8-127.2 (m, CH-Aryl)], 117.7, [103.1, 98.5 (CHanomeric)], 

82.5, 80.1, 79.1, 75.4, 75.2, 74.6, 74.3, 74.2, 73.7, 73.2, 72.8, 72.6, 69.8, 68.9, 27.0, 

19.2. 

HRMS-MALDI (m/z):  [M+Na]+Calcd for C66H74NaO11Si, 1093.4898; Found, 

1093.4898. 
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Synthesis of Allyl O-(2,3,4-tetra-O-benzyl-6-O-(tert-butyldiphenylsilyl)-β-D-

galactopyranosyl)-(1-4)- 2-O-trimetylacetyl-3,6-di-O-benzyl-β-D- 

mannopyranoside 4. 

To a allyl O-(2,3,4-tetra-O-benzyl-6-O-(tert-butyldiphenylsilyl)-β-D-

galactopyranosyl)-(1-4)-3,6-di-O-benzyl-2-O-hydroxy-β-D-mannopyranoside 3 (1 g, 

0.9 mmol) in dichloromethane (5 mL) was added DMAP (57 mg, 0.5 mmol), 

triethylamine (0.62 mL, 0.18 mmol) and trimethyl acetylchloride (0.23 mL, 0.18 

mmol). The reaction mixture was stirred at 25 oC for 1 h and then concentrated under 
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reduced vacuum. The crude residue was purified by flash silica column 

chromatography to afford the desired product 4 (1.04 mg, 96 %) 

Rf (ethyl acetate/haxane): 0.65 (25/75)  

1H NMR (CDCl 3, 400 MHz): δ (ppm) 7.54-7.00 (m, 35H), 5.89-5.79 (m, 1H), 5.46 

(d, 1H, J = 3.2 Hz), 5.25 (dd, 1H, J = 17.2, 1.6 Hz), 5.15 (dd, 1H, J = 10.4, 1.2 Hz), 

5.05 (11.6), 4.78-4.69 (m, 4H), 4.60 (d, 2H, J = 12 Hz), 4.54 (d, 2H, J = 9.6 Hz), 4.48 

(d, 1H, J = 5.2 Hz), 4.45 (d, 1H, J = 12 Hz), 4.32-4.27 (m, 1H), 4.05-3.98 (m, 2H), 

3.95 (d, 1H, J = 2.4 Hz), 3.84-3.80 (m, 3H), 3.74 (dd, 1H, J = 9.6, 8 Hz), 3.55-3.50 (m, 

2H), 3.46-3.45 (m, 1H), 3.42 (dd, 1H, J = 9.6, 2.8 Hz), 3.22 (dd, 1H, J = 8.8, 5.2 Hz), 

1.05 (s, 9H), 1.01 (s, 9H). 

13 C NMR (CDCl3, 100 MHz): δ (ppm) 177.7 (C=O), [139.2, 138.9, 138.7, 138.6, 

138.4 (Cq-Aryl)], 135.5, 133.9, 133.2, [129.8-127.0 (m, CH-Aryl)], 117.7, [102.7, 

97.6 (CHanomeric)], 82.6, 80.1, 77.7, 75.6, 75.1, 74.6, 74.2, 73.9, 73.6, 73.0, 72.9, 71.5, 

69.5, 68.8, 68.5, 61.5, 38.9, 27.1, 27.0, 19.2. 

HRMS-MALDI (m/z):  [M+Na]+Calcd for C71H82NaO12Si, 1178.4788; Found, 

1178.4167. 
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Synthesis of Vinyl O-(2,3,4-tetra-O-benzyl-6-O-(tert-butyldiphenylsilyl)-β-D-

galactopyranosyl)-(1-4)- 2-O-trimetylacetyl-3,6-di-O-benzyl-β-D- 

mannopyranoside 5. 

To a allyl O-(2,3,4-tetra-O-benzyl-6-O-(tert-butyldiphenylsilyl)-β-D-

galactopyranosyl)-(1-4)- 2-O-trimetylacetyl-3,6-di-O-benzyl-β-D-mannopyranoside 4 

(1 g, 0.09 mmol) in THF (10 mL) was added catalytic amount of (1,5-

Cyclooctadiene)bis(methyldiphenylphosphine)iridium(I) hexafluorophosphate (10 mg, 

0.01 mmol). The stirred solution was degassed, placed under N2 and degassed. The 

reaction mixture was placed under H2 for 5 min and degassed once more to prevent 

further reduction.  The mixture was stirred at 25 oC for 30 min under N2 and then 

concentrated under reduced vacuum. The crude residue was purified by flash silica 

column chromatography to afford the desired product 5 (0.93 g, 93 %). 

Rf (ethyl acetate/haxane):  0.68 (25/75)  

1H NMR (CDCl 3, 400 MHz): δ (ppm) 7.54-7.00 (m, 35H), 6.18 (dd, 1H, J = 12.4, 

1.6 Hz), 5.46 (d, 1H, J = 2.4 Hz), 5.04-4.99 (m ,1H), 5.02 (d, 1H, J = 11.6 Hz), 4.76-



www.manaraa.com

107 

4.67 (m, 6H), 4.58-4.40 (m, 7H), 3.97 (t, 1H, J = 9.2 Hz), 3.93 (d, 1H, J = 2.4), 3.81-

3.77 (m, 4H), 3.73 (dd, 1H, J = 9.6, 8 Hz), 3.54-3.48 (m, 4H), 3.42 (dd, 1H, J = 9.6, 

2.8 Hz), 3.21 (dd, 1H, J = 8.8, 4.8 Hz), 1.50 (dd, 3H, J = 6.8, 1.2 Hz), 1.03 (s, 9H), 

0.99 (s, 9H).   

13 C NMR (CDCl3, 100 MHz): δ (ppm) 177.8 (C=O), 143.8, [139.5, 139.2, 139.0, 

138.9, 138.7 (Cq-Aryl)], 135.9, 133.5, 133.5, [128.8-127.4 (m, CH-Aryl)], 104.4, 

[103.1, 98.0 (CHanomeric)], 82.6, 80.1, 77.8, 76.2, 75.5, 75.0, 74.6, 74.1, 74.0, 73.3, 

73.3, 72.0, 69.0, 68.5, 61.8, 39.3, 27.5, 27.4, 19.6, 12.8.. 

HRMS-MALDI (m/z):  [M+Na]+Calcd for C71H82NaO12Si, 1178.4788; Found, 

1178.8628. 
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Synthesis of Triethylammonium (2,3,4-tetra-O-benzyl-6-O-(tert- 

butyldiphenylsilyl)- β-D-galactopyranosyl)-(1-4)- 2-O-trimetylacetyl-3,6-di-O- 

benzyl-β-D-mannopyranosyl hydrogen phosphonate 6. 
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To a vinyl O-(2,3,4-tetra-O-benzyl-6-O-(tert-butyldiphenylsilyl)-β-D-

galactopyranosyl)-(1-4)- 2-O-trimetylacetyl-3,6-di-O-benzyl-β-D-mannopyranoside 5 

(0.9 g, 0.8 mmol), and mercury oxide (0.24 g, 0.1 mmol) in 10 mL of acetone/H2O 

(10/1)  was added a solution of mercuric chloride (0.23 g, 0.9 mmol) in 5 mL of  

acetone/H2O (10/1) for 1 min. The reaction mixture was stirred at 25 oC for 3 h. The 

crude residue was filtered through celite and diluted with dichloromethane (5 mL). 

The organic layer was washed with sat. KI (1 x 5 mL), H2O (1 x 5 mL) and brine (1 x 

5 mL). The solvent was dried with Na2SO4 and concentrated under reduced vacuum. 

The crude residue was purified by flash silica column chromatography to afford the 

hydrolyzed product (0.79 g, 91 %). Hydrolyzed compound (0.7 g, 0.6 mmol) and 

phosphonic acid (57 mg, 0.7 mmol) were coevaporated with pyridine and dried under 

high vacuume for 30 min. To a solution of this mixture in pyridine (5 mL) was added 

a solution of pivaloyl chloride (0.085 mL, 0.7 mmol) in pyridine (2 mL) and then the 

mixture was stirred at 25 oC for 30 min under nitrogen gas environment. Prydine was 

removed under reduced vacuum and the crude product was purified by flash silica 

column chromatography (with triethylamine) to afford the desired product 6 (0.86 g, 

83 %). 
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Rf (10 % MeOH in DCM):  0.5. 

1H NMR (CDCl 3, 400 MHz): δ (ppm) 7.51-7.15 (m, 35H), 6.98 (d, 1H, JHP = 685 

Hz), 5.53 (d, 1H, J = 8.8 Hz), 5.30 (s, 1H), 5.06 (d, 1H, J = 11.2 Hz), 4.80-4.70 (m, 

5H), 4.66-4.56 (m, 4H), 4.46 (d, 1H, J = 11.2 Hz), 4.38-4.35 (m, 2H), 4.14 (t, 1H, J = 

9.6 Hz), 4.02-3.90 (m, 5H), 3.80-3.70 (m, 3H), 3.66 (d, 1H, J = 9.6 Hz), 3.44 (dd, 1H, 

J = 9.2 Hz), 3.38 (dd, 1H, J = 9.6, 2.4 Hz), 0.99 (s, 9H), 0.93 (s, 9H).  

13 C NMR (CDCl3, 100 MHz): δ (ppm) 177.5 (C=O), [139.4, 139.2, 139.0, 138.0, 

138.9 (Cq-Aryl)], 135.6, 133.4, 133.4, [129.9-126.8 (m, CH-Aryl)], [103.3, 93.5 

(CHanomeric)], 82.7, 80.2, 75.5, 75.3, 74.8, 74.2, 74.1, 74.0, 73.1, 73.1, 73.0, 72.4, 68.6, 

45.9 (NEt3), 39.0, 27.3, 27.1, 19.4, 9.2(NEt3). 

HRMS-MALDI (m/z):  [M-NEt3-H]-Calcd for C68H78O14PSi, 1177.4898; Found, 

1177.0978. 

31P NMR (162 MHz, CDCl3): δ 1.31. 
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Synthesis of 3-(perfluorooctyl)propanyloxybutenyl-[2,3,4,6,-tetra-O-benzyl-β-D-

galactopyranosyl-]-α-D-mannopyranosyl phosphate triethylammonium salt 7. 

Triethylammonium (2,3,4-tetra-O-benzyl-6-O-(tert-butyldiphenylsilyl)-β-D-

galactopyranosyl)-(1-4)- 2-O-trimetylacetyl-3,6-di-O-benzyl-β-D-mannopyranosyl 

hydrogen phosphonate 6 (0.1 g, 0.08 mmol) and 3-

(perfluorooctyl)propanyloxybutenyl alcohol25 (43 mg, 0.08 mmol) were coevaporated 

with pyridine and dried under high vacuume for 30 min. To a solution of this mixture 

in pyridine (3 mL) was added a solution of pivaloyl chloride (0.02 mL, 0.16 mmol) in 

pyridine (0.5 mL) and then the mixture was stirred at 25 oC for 1 h under nitrogen gas 

environment. To the reaction mixture was added a solution of iodine (20 mg, 0.008) in 

pyridine/water mixture (0.2 mL, 10/1) and the reaction mixture was quenched with 

saturated Na2S2O3. Excess pyridine was evaporated under reduced pressure and then 

the crude product was purified by flash silica column chromatography (with 

triethyamine) to afford the desired product 7 (0.12 g, 87 %). 

Rf (10 % MeOH in DCM):  0.6. 

1H NMR (CDCl 3, 400 MHz): δ (ppm) 7.33-6.89 (m, 35H), 5.72 (m, 1H), 5.54 

(m ,1H), 5.47 (d, 1H, J = 8.4 Hz), 5.45 (s, 1H), 5.04 (d, 1H, J = 11.2 Hz), 4.78-4.69 
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(m, 5H), 4.62 (d, 1H, J = 7.2 Hz), 4.57-4.54 (m, 3H), 4.49-4.41 (m, 3H), 4.37-4.34 (m, 

2H), 4.10 (t, 1H, J = 9.6 Hz), 4.02-3.88 (m, 4H), 3.78-3.68 (m, 3H), 3.45-3.33 (m, 

4H), 3.13 (dd, 1H, J = 9.2, 4.8 Hz), 2.13-2.09 (m, 2H), 1.80-1.76 (m, 2H), 0.98 (s, 9H), 

0.91 (s, 9H). 

13 C NMR (CDCl3, 100 MHz): δ (ppm) 177.3 (C=O), [139.5, 139.2, 139.1, 138.9, 

138.9 (Cq-Aryl)], 135.6, 133.5, 133.4, [129.8-126.7 (m, CH-Aryl)], [103.3, 94.4 

(CHanomeric)], 82.6, 80.2, 74.2, 74.0, 73.0, 72.5, 70.7, 68.7, 68.7, 61.7, 61.2,  45.9 

(NEt3), 38.9, 28.4, 28.2, 28.0, 27.1, 19.4, 8.7 (NEt3). 

HRMS-MALDI (m/z):  [M-NEt3-H]-Calcd for C83H89F17O16PSi, 1723.5386; Found, 

1722.8274. 

31P NMR (162 MHz, CDCl3)δ -1.44 

 

ASW Leishmania-phosphoglycan repeats method run 

  After FSPE, the methanol elution collected in the vial was removed from the 

instrument and concentrated. Solvent was removed under reduced pressure to obtain 

the crude product (30 mg) as colorless oil. In order to obtain pure product 8 (19 mg, 

10 %) for 1H NMR, 13 C NMR and mass spectrum, further purification was performed 
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using prep TLC.  

 

- 2.5 cycles (24h 56 min 39 sec) completed for the synthesis of phosphoglycan repeats. 

 

Step Task Reagent/ Operation Operation 
Time 

1 

 

 

 

2 

3 

4 

 

5 

6 

7 

8 

9 

10 

 

Coupling 

 

 

 

Oxidation 

Quenching  

Evaporation 

 

TLC sample 

FSPE 

Deprotection 

TLC sample 

Evaporation 

FSPE 

preparation 

Sample 

2 equivalent donor  (100 µmol) in 0.5 mL 

Pyridine,  

1 equivalent F-tagged acceptor (50 µmol) in 0.5 

mL Pyridine; 1 equivalent Piv-Cl  

I2 in Pyridine/Water (0.3 mL) 

Na2S2O3 (0.2 mL) 

Add TEA and Toluene 

70 oC 

30 µl of crude reaction mixture withdrawn 

 

5 equivalent of TBAF solution in THF 

30 µl of crude reaction mixture withdrawn 

70 oC 

0.4 ml DMF 

0.7 ml crude sample transferred to cartridge 

4.7 ml 80% methanol wash 

2 h 

 

 

 

 

1h 

  

2 h 

 

 

3 h 
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loading 

   Wash 

Wash 

Transfer 

Evaporation 

Transfer 

Evaporation 

1.5 ml methanol wash (repeated 3 times) 

4.7 ml collected sample transferred to clean vial 

 

50 oC 

2 ml toluene added 

50 oC 

 

45 min 

 

45 min 

 

Synthesis of Phosphoglycan repeats 8. 

Rf (10 % MeOH in DCM):  0.55. 

1H NMR (CDCl 3, 400 MHz): δ (ppm) 7.50-6.85 (m, 85H), 5.75 (m, 1H), 5.53-5.47 

(m, 3 H), 5.41 (s, 1H), 5.34 (s, 1H), 5.04 (d, 1H, J = 8 Hz), 4.90 (d, 1H, J = 12 Hz), 

4.79-4.66 (m, 11H), 4.63-4.48 (m, 12H), 4.45-4.35 (m, 8H), 4.28 (d, 2H, J = 12 Hz), 

4.19-4.06 (m, 10H), 3.98-3.80 (m, 11H), 3.76-3.67 (m, 5H), 3.63-3.53 (m, 5H), 3.41-

3.31 (m, 6H), 3.12-3.09 (m, 2H), 2.15-2.03 (m, 2H), 1.84-1.81 (m, 2H), 1.23 (s, 9H), 

1.10 (s, 9H), 0.98 (s, 9H), 0.87 (s, 9H).   

13 C NMR (CDCl3, 100 MHz): δ (ppm) [178.2, 177.5, 177.1 (C=O)], 151.0, [139.7-

138.7 (Cq-Aryl)], 133.4, 133.3, [129.8-126.7 (m, CH-Aryl)], [103.2,103.2, 103.0, 94.5, 

94.3, 94.2 (CHanomeric)], 82.6, 82.6, 80.2, 80.2,75.9,75.1, 74.8, 73.9, 72.9, 72.7, 72.4, 
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72.2, 68.9, 68.7, 68.0, 66.7, 62.7, 61.6, 61.1, 59.2, 57.0, 45.9 (NEt3), 39.1, 38.9, 31.6, 

28.7, 27.3, 27.1, 24.3, 21.0, 19.4, 19.2, 13.9, 18.9, 8.7 (NEt3). 

HRMS-MALDI (m/z):  [M-2NEt3-3H]3-Calcd for C189H210F17NO44P3Si, 3641.2936; 

Found, 3641.3557. 

31P NMR (162 MHz, CDCl3)δ -0.76, -1.24, -1.32. 

 

OH

OC8F17

OHNEt3

PO H

O

OC8F17

Synthesis of (perfluorooctyl)propanyloxybutenyl- hydrogen phosphonate 9. 

(Perfluorooctyl)propanyloxybutenyl alcohol25 (0.1 g, 0.18 mmol) and phosphonic 

acid (30 mg, 0.36 mmol) were coevaporated with pyridine and dried under high 

vacuume for 30 min. To a solution of this mixture in pyridine (5 mL) was added a 

solution of pivaloyl chloride (0.045 mL, 0.36 mmol) in pyridine (2 mL) and then the 

mixture was stirred at 25 oC for 30 min under nitrogen gas environment. Prydine was 

removed under reduced vacuum and the crude product was purified by flash silica 

column chromatography (with triethylamine) to afford the desired product 9 (0.11 g, 

82 %). 
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Rf (10 % MeOH in DCM):  0.7 

1H NMR (CDCl 3, 400 MHz): δ (ppm) 6.83 (d, 1H, JHP = 685 Hz), 5.77-5.71 (m, 1H), 

5.65-5.59 (m, 1H), 4.46 (t ,1H, J = 8 Hz), 4.04 (d, 1H, J = 6 Hz), 3.45 (d, 2H, J = 6 

Hz), 2.21-2.07 (m, 2H), 1.86-1.79 (m, 1H).  
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Synthesis of Vinyl-O-(3,4,6-tri-O-benzyl-2-O-(2-O-acetyl-3,4,6-tri-O-benzyl-αααα-

Dmannopyranosyl)-αααα-D-mannopyranoside 10. 

To a solution of allyl-O-3,4,6-tri-O-benzyl-2-O-(2-O-acetyl-3,4,6-tri-O-benzyl-α-

Dmannopyranosyl)-α-D-mannopyranoside (0.15 g, 0.08 mmol) in THF (3 mL) was 

added catalytic amount of (1,5-

Cyclooctadiene)bis(methyldiphenylphosphine)iridium(I) hexafluorophosphate (7 mg, 

0.008 mmol). The stirred solution was degassed, placed under N2 and degassed. The 

reaction mixture was placed under H2 for 1 min and degassed once more to prevent 

further reduction.  The mixture was stirred at 25 oC for 1 h under N2 and then 
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concentrated under reduced vacuum. The crude residue was purified by flash silica 

column chromatography to afford the desired product 10 (0.14, 95 %). 

Rf (ethyl acetate/haxane): 0.63 (25/75)  

1H NMR (CDCl 3, 400 MHz): δ (ppm) 7.33-7.15 (m, 30H), 6.07 (d, 1H, J = 12 Hz), 

5.54 (s, 1H), 5.12 (d, 1H, J = 20 Hz), 5.05-5.05 (m, 1H), 4.85-4.82 (m, 2H), 4.72-4.62 

(m, 5H), 4.55 (d, 2H, J = 12 Hz), 4.48-4.43 (m, 4H), 4.39 (d, 1H, J = 8 Hz), 4.05 (d, 

1H, J = 16 Hz), 3.96-3.89 (m, 3H) 3.84-3.66 (m, 6H), 2,12 (s, 3H), 1.49 (d, 3H, J = 8 

Hz). 

13 C NMR (CDCl3, 100 MHz): δ (ppm) 170.3 (C=O), 142.6, [138.7, 138.6, 138.5, 

138.4, 138.2 (Cq-Aryl)], [128.6-127.6 (m, CH-Aryl)], 104.8, [99.9, 98.3 (CHanomeric)], 

79.7, 78.4, 75.4, 75.3, 74.6, 73.6, 73.4, 72.4, 72.2, 69.3, 69.2, 69.0, 21.4, 12.6. 

HRMS-MALDI (m/z):  [M+Na]+Calcd for C59H64NaO12, 988.1220; Found, 988.3250. 
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Synthesis of 3-(perfluorooctyl)propanyloxybutenyl-3,4,6-tri-O-benzyl-2-O-(2-O-

acetyl-3,4,6-tri-O-benzyl-αααα-Dmannopyranosyl)-αααα-D-mannopyranosyl phosphate 

10-1.

To a vinyl-O-(3,4,6-tri-O-benzyl-2-O-(2-O-acetyl-3,4,6-tri-O-benzyl-α-

Dmannopyranosyl)-α-D-mannopyranoside 9 (0.1 g, 0.1 mmol), and mercury oxide 

(31 mg, 0.14 mmol) in 4 mL of acetone/H2O (10/1)  was added a solution of 

mercuric chloride (31 mg, 0.11 mmol) in 4 mL of acetone/H2O (10/1) for 1 min. The 

reaction mixture was stirred at 25 oC for 3 h. The crude residue was filtered through 

celite and diluted with dichloromethane (5 mL). The organic layer was washed with 

sat. KI (1 x 5 mL), H2O (1 x 5 mL) and brine (1 x 5 mL). The solvent was dried with 

Na2SO4 and concentrated under reduced vacuum. The crude residue was purified by 

flash silica column chromatography to afford the hydrolyzed product (90 mg, 94 %). 
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The hydrolyzed product (50 mg, 0.05 mmol) and triethylammonium 3-

(perfluorooctyl)propanyloxybutenyl- hydrogen phosphonate (39 mg, 0.05 mmol) were 

coevaporated with pyridine and dried under high vacuume for 30 min. To a solution of 

this mixture in pyridine (3 mL) was added a solution of pivaloyl chloride (0.013 mL, 

0.1 mmol) in pyridine (0.5 mL) and then the mixture was stirred at 25 oC for 30 min 

under nitrogen gas environment. To the reaction mixture was added a solution of 

iodine (13 mg, 0.05) in pyridine/water mixture (0.2 mL, 10/1) and the reaction 

mixture was quenched with saturated Na2S2O3. Excess pyridine was evaporated under 

reduced pressure and then the crude product was purified by flash silica column 

chromatography (with triethyamine) to afford the desired product 10-1 (67 mg, 82 %). 

Rf (10 % MeOH in DCM): 0.65 

1H NMR (CDCl 3, 400 MHz): δ (ppm) 7.28-7.06 (m, 30H), 5.66-5.61 (m, 1H), 5.57-

5.54 (m, 1H), 5.50 (s, 1H), 5.05 (s, 1H), 4.78 (t, 1H, J = 10.4 Hz), 4.68 (d, 1H, J = 12 

Hz), 4.63-4.61 (m, 3H), 4.54 (d, 1H, J = 16 Hz), 4.47-4.34 (m, 7H), 4.02 (br, 1H), 

3.94-3.89 (m, 6H), 3.86 (d, 1H, J = 12 Hz), 3.79-3.72 (m, 2H), 3.65 (d, 1H, J = 12 Hz), 

3.59 (br, 2H), 3.40 (br, 1H), 3.34 (t, 2H, J = 8 Hz), 2.14-2.02 (m, 2H), 2.08 (s, 3H), 

1.79-1.72 (m, 2H).    
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13 C NMR (CDCl3, 100 MHz): δ (ppm) 170.2 (C=O), [138.4, 138.4, 138.2, 138.0, 

138.0 (Cq-Aryl)], [128.5-127.4 (m, CH-Aryl)], [99.7, 95.0 (CHanomeric)], 79.2, 78.1, 

75.2, 75.1, 74.1, 73.2, 72.8, 72.2, 72.0, 71.9, 68.9, 68.8, 68.7, 68.4, 66.5, 61.8, 28.1, 

27.9, 27.5, 21.0. 

31P NMR (162 MHz, CDCl3):δ -3.84 

HRMS-MALDI (m/z): [M-NEt3]
 Calcd for C71H72F17O16P, 1535.2684; Found, 

1535.4162. 
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Synthesis of Vinyl-O-3,4,6-O-benzyl-2-O-[2-O-(2-O-acetyl-3,4,6-tri-O-benzyl-αααα-

D-mannopyranosyl)-3,4,6-tri-O-benzyl-αααα-D-mannopyranosyl]- αααα-D- 

mannopyranoside 11. 

To a solution of allyl-O-3,4,6-O-benzyl-2-O-[2-O-(2-O-acetyl-3,4,6-tri-O-benzyl-α-
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D-mannopyranosyl)-3,4,6-tri-O-benzyl-α-D-mannopyranosyl]-α-D-annopyranoside 

(0.11 g, 0.08 mmol) in THF (3 mL) was added catalytic amount of (1,5-

Cyclooctadiene)bis(methyldiphenylphosphine)iridium(I) hexafluorophosphate (3 mg, 

0.004 mmol). The stirred solution was degassed, placed under N2 and degassed. The 

reaction mixture was placed under H2 for 5 min and degassed once more to prevent 

further reduction.  The mixture was stirred at 25 oC for 30 min under N2 and then 

concentrated under reduced vacuum. The crude residue was purified by flash silica 

column chromatography to afford the desired product 11 (0.103 g, 94 %). 

Rf (ethyl acetate/haxane): 0.70 (25/75)  

1H NMR (CDCl 3, 400 MHz): δ (ppm) 7.33-7.14 (m, 45H), 6.05 (d, 1H, J = 12 Hz), 

5.54 (s, 1H), 5.19 (d, 1H, J = 8 Hz), 5.06-5.05 (m, 1H), 5.03 (s, 1H), 4.85 (d, 1H, J = 

12 Hz), 4.70-4.50 (m, 14H), 4.45-4.41 (m, 3H), 4.32 (d, 1H, J = 12 v), 4.09 (br, 1H), 

4.01-3.89 (m, 9H), 3.83-3.81 (m, 2H), 3.73-3.64 (m, 6H), 3.54 (d, 1H, J = 12 Hz), 

2.13 (s, 3H), 1.47 (d, 3H, J = 4 Hz). 

13 C NMR (CDCl3, 100 MHz): δ (ppm) 170.3 (C=O), 142.2, [138.8, 138.7, 138.6, 

138.6, 138.6, 138.5, 138.4, 138.2 (Cq-Aryl)], [128.6-127.6 (m, CH-Aryl)], 104.6, 

[100.9, 99.6, 98.3 (CHanomeric)], 79.4, 78.3, 75.4, 75.3, 75.2, 74.9, 74.7, 74.5, 73.6, 
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73.5, 73.4, 72.5, 72.3, 72.1, 69.8, 69.3, 69.1, 69.0, 21.4, 12.6. 

HRMS-MALDI (m/z):  [M+Na]+Calcd for C86H92NaO17 1420.6302; Found, 

1420.4338. 
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3-(Perfluorooctyl)propanyloxybutenyl-3,4,6-O-benzyl-2-O-[2-O-(2-O-acetyl-

3,4,6-tri-O-benzyl-αααα-D-mannopyranosyl)-3,4,6-tri-O-benzyl-αααα-D-

mannopyranosyl]- αααα-D-mannopyranosyl phosphate 11-1. 

To a vinyl-O-3,4,6-O-benzyl-2-O-[2-O-(2-O-acetyl-3,4,6-tri-O-benzyl-α-D-

mannopyranosyl)-3,4,6-tri-O-benzyl-α-D-mannopyranosyl]-α-D-mannopyranoside 11 

(0.1 g, 0.07 mmol), and mercury oxide (22 mg, 0.1 mmol) in 3 mL of acetone/H2O 

(10/1)  was added a solution of mercuric chloride (21 mg, 0.08 mmol) in 3 mL of  
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acetone/H2O (10/1) for 1 min. The reaction mixture was stirred at 25 oC for 4 h. The 

crude residue was filtered through celite and diluted with dichloromethane (5 mL). 

The organic layer was washed with sat. KI (1 x 5 mL), H2O (1 x 5 mL) and brine (1 x 

5 mL). The solvent was dried with Na2SO4 and concentrated under reduced vacuum. 

The crude residue was purified by flash silica column chromatography to afford the 

hydrolyzed product (92 mg, 95 %). 

The hydrolyzed product (50 mg, 0.04 mmol) and triethylammonium 3-

(perfluorooctyl)propanyloxybutenyl- hydrogen phosphonate (26 mg, 0.04 mmol) were 

coevaporated with pyridine and dried under high vacuume for 30 min. To a solution of 

this mixture in pyridine (3 mL) was added a solution of pivaloyl chloride (0.009 mL, 

0.08 mmol) in pyridine (0.3 mL) and then the mixture was stirred at 25 oC for 30 min 

under nitrogen gas environment. To a solution of this mixture in pyridine (3 mL) was 

added a solution of pivaloyl chloride (0.013 mL, 0.1 mmol) in pyridine (0.5 mL) and 

then the mixture was stirred at 25 oC for 30 min under nitrogen gas environment. To 

the reaction mixture was added a solution of iodine (9 mg, 0.04) in pyridine/water 

mixture (0.2 mL, 10/1) and the reaction mixture was quenched with saturated 

Na2S2O3. Excess pyridine was evaporated under reduced pressure and then the crude 
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product was purified by flash silica column chromatography (with triethyamine) to 

afford the desired product 11-1 (62 mg, 81 %). 

Rf (10 % MeOH in DCM):  0.68 

1H NMR (CDCl 3, 400 MHz): δ (ppm) 7.26-7.09 (m, 45H), 5.64-5.58 (m, 1H), 5.54-

5.46 (m, 3H), 5.19 (s, 1H), 5.05 (s, 1H), 4.79 (d, 1H, J = 8 Hz), 4.76 (d, 1H, J = 8 Hz), 

4.67 (d, 1H, J = 12 Hz), 4.61 (d, 1H, J = 8 Hz), 4.56 (d, 1H, J = 4), 4.53-4.50 (m, 4H), 

4.47-4.44 (m, 4H), 4.39-4.32 (m, 4H), 4.25 (d, 1H, J = 12 Hz), 4.10 (d, 1H, J = 28 Hz), 

3.95-3.85 (m, 9H), 3.81 (d, 1H, J = 8 Hz), 3.74-3.69 (m, 2H), 3.65-3.56 (m, 4H), 3.44 

(d, 1H, J = 8 Hz), 3.39 (t, 1H, J = 4 Hz), 3.30 (t, 2H, J = 8 Hz), 2.12-1.99 (m, 2H), 

2.09 (s, 3H), 1.76-1.69 (2H).  

13 C NMR (CDCl3, 100 MHz): δ (ppm) 170.3 (C=O), [138.4, 138.2, 138.2, 138.1, 

138.1, 138.0, 137.9,  137.8 (Cq-Aryl)], [128.4-127.4 (m, CH-Aryl)], [100.2, 99.2. 

95.1 (CHanomeric)], 79.1, 78.2, 75.1, 75.1, 74.5, 74.4, 74.3, 74.2, 74.1, 73.4, 73.2, 72.7, 

72.5, 72.1, 72.1, 71.9, 71.8, 69.0, 68.7, 68.5, 61.7, 61.6, 49.2, 46.3 (NEt3),28.1, 27.8, 

27.6, 21.1, 8.6 (NEt3).  

31P NMR (162 MHz, CDCl3): δ -3.36 

HRMS-MALDI (m/z):  [M-NEt3] Calcd for C98H100F17O21P 1967.7766; Found, 
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1967.4717. 
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Synthesis of Vinyl-O-3,6-di-O-benzyl-4-O-[2,3,4,6,-tetra-O-benzyl-β-D- 

galactopyranosyl-]-2-O-[2-O-acetyl-3,4,6-tri-O-benzyl-α-D-mannopyranosyl]-β-

D-mannopyranoside 12. 

To a solution of vinyl O-(2,3,4,6,-tetra-O-benzyl-β-D-galactopyranosyl)-(1-4)-2-O-

hydroxy-3,6-di-O-benzyl-β-D-mannopyranoside24 (0.2 mg, 0.2 mmol) and 2-O-

acetyl-3,4,6-tri-O-benzylyl-α-D-mannopyranosyl tricholoroacetimidate (0.15 g, 0.22 

mmol) in dry toluene (5 mL) was added TMSOTf (3 µL, 0.02 mmol) at 25 oC. The 

reaction mixture was stirred at 25 oC for 10 min. The reaction was quenched with 

triethylamine (0.1 mL) and concentrated under reduced pressure. The crude product 

was purified by flash silica column chromatography to afford the desired product 12 

(0.27 g, 89 %). 

Rf (ethyl acetate/haxane):  0.63 (25/75)  

1H NMR (CDCl 3, 400 MHz): δ (ppm) 7.31-7.14 (m, 45H), 6.22 (d, 1H, J = 8 Hz), 
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5.59 (s, 1H), 5.15 (s, 1H), 5.03-4.98 (m 1H), 4.91-4.79 (m, 4H), 4.72-4.62 (m, 8H), 

4.54-4.30 (m, 11H), 4.23 (d, 1H, J = 12 Hz), 4.12 (t, 1H, J = 8 Hz), 4.05 (dd, 1H, J = 

8, 4 Hz), 3.91-3.88 (m, 4H), 3.83 (dd, 1H, J = 8, 4 Hz), 3.75-3.69 (m, 3H), 3.66-3.45 

(m, 6H), 3.40-3.36 (m, 2H), 2.04 (s, 3H), 1.56 (dd, 3H, J = 16, 8 Hz).  

13 C NMR (CDCl3, 100 MHz): δ (ppm) 170.0 (C=O), 144.0, [139.3, 139.2, 139.0, 

139.0, 138.9, 138.7, 138.6 138.4 (Cq-Aryl)], [128.6-127.1 (m, CH-Aryl)], 104.1, 

[103.5, 99.9, 98.8 (CHanomeric)], 82.9, 80.2, 79.9, 78.9, 76.2, 75.5, 75.1, 74.8, 74.6, 

73.7, 73.6, 73.4, 73.1, 72.7, 72.3, 71.7, 69.4, 69.2, 68.9, 68.4, 21.4, 12.7. 

HRMS-MALDI (m/z):  [M] +Calcd for C86H92O17, 1397.6405; Found, 1397.3901. 
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Synthesis of 3-(perfluorooctyl)propanyloxybutenyl-3,6-di-O-benzyl-4-O-[2,3,4,6,-

tetra-O-benzyl-β-D-galactopyranosyl-]-2-O-[2-O-acetyl-3,4,6-tri-O-benzyl- α -D-

mannopyranosyl]-α-D-mannopyranosyl phosphate 12-1. 
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To a vinyl-O-3,6-di-O-benzyl-4-O-[2,3,4,6,-tetra-O-benzyl-β-D-galactopyranosyl-]-

2-O-[2-O-acetyl-3,4,6-tri-O-benzyl-α-D-mannopyranosyl]-α-D-mannopyranoside 11 

(0.1 g, 0.07 mmol), and mercury oxide (22 mg, 0.01 mmol) in 5 mL of acetone/H2O 

(10/1)  was added a solution of mercuric chloride (21 mg, 0.08 mmol) in 5 mL of  

acetone/H2O (10/1) for 1 min. The reaction mixture was stirred at 25 oC for 3 h. The 

crude residue was filtered through celite and diluted with dichloromethane (5 mL). 

The organic layer was washed with sat. KI (1 x 5 mL), H2O (1 x 5 mL) and brine (1 x 

5 mL). The solvent was dried with Na2SO4 and concentrated under reduced vacuum. 

The crude residue was purified by flash silica column chromatography to afford the 

hydrolyzed product (85 mg, 88 %). 

The hydrolyzed product (50 mg, 0.04 mmol) and triethylammonium 3-

(perfluorooctyl)propanyloxybutenyl- hydrogen phosphonate (26 mg, 0.04 mmol) were 

coevaporated with pyridine and dried under high vacuume for 30 min. To a solution of 

this mixture in pyridine (3 mL) was added a solution of pivaloyl chloride (0.009 mL, 

0.08 mmol) in pyridine (0.3 mL) and then the mixture was stirred at 25 oC for 30 min 

under nitrogen gas environment. To a solution of this mixture in pyridine (3 mL) was 

added a solution of pivaloyl chloride (0.013 mL, 0.1 mmol) in pyridine (0.5 mL) and 
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then the mixture was stirred at 25 oC for 30 min under nitrogen gas environment. To 

the reaction mixture was added a solution of iodine (9 mg, 0.04) in pyridine/water 

mixture (0.2 mL, 10/1) and the reaction mixture was quenched with saturated 

Na2S2O3. Excess pyridine was evaporated under reduced pressure and then the crude 

product was purified by flash silica column chromatography (with triethyamine) to 

afford the desired product 12-1(63 mg, 83 %). 

Rf (10 % MeOH in DCM): 0.68 

1H NMR (CDCl 3, 400 MHz): δ (ppm) 7.26-7.14 (m, 45H), 5.66-5.64 (m, 1H), 5.56-

5.45 (m, 3H), 5.09 (d, 1Hanomeric, J = < 1 Hz), 4.97 (d, 1H, J = 12), 4.76 (d, 1H, J = 12 

Hz), 4.76 (d, 1H, J = 12 Hz), 4.67-4.56 (m, 5H), 4.52-4.35 (m, 8H), 4.31-4.24 (m, 4H), 

4.17 (d, 1H, J = 8 Hz), 4.12 (t, 1H, J = 8 Hz), 4.03 (br, 1H), 3.94 (m, 8H), 3.74-3.60 

(m, 5H), 3.51 (t, 1H, J = 8 Hz), 3.40-3.37 (m, 3H), 3.33 (t, 2H, J = 8 Hz), 2.15-2.06 

(m, 2H), 2.01 (s, 3H), 1.79-1.72 (m, 2H).   

13 C NMR (CDCl3, 100 MHz): δ (ppm) 169.8 (C=O), [139.1, 139.0, 138.8, 138.4, 

138.3, 138.1, 138.1, 138.0, 137.9 (Cq-Aryl)], [128.3-127.0 (m, CH-Aryl)], [103.2, 

99.6. 95.0 (CHanomeric)], 82.0, 79.9, 78.4, 75.9, 75.2, 74.6, 74.0, 73.3, 73.2, 73.0, 72.7, 

72.4, 71.9, 71.8,68.7, 66.5, 61.8, 61.7,46.2, 28.1, 27.7, 27.1, 21.0. 
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31P NMR (162 MHz, CDCl3): δ -2.99 

HRMS-MALDI (m/z):  [M-NEt3] Calcd for C98H100F17O21P 1967.7766; Found, 

1967.3716. 
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Synthesis of Vinyl-O-3,6-di-O-benzyl-4-O-[2,3,4,6,-tetra-O-benzyl-β-D- 

galactopyranosyl]-2-O-[2-O-(2-O-acetyl-3,4,6-tri-O-benzyl-α-D-

mannopyranosyl)-3,4,6-tri-O-benzyl-α-D-mannopyranosyl]-α-D-

mannopyranoside 13. 

To a solution of allyl-O-3,6-di-O-benzyl-4-O-[2,3,4,6,-tetra-O-benzyl-β-D-

galactopyranosyl]-2-O-[2-O-(2-O-acetyl-3,4,6-tri-O-benzyl-α-D-mannopyranosyl)-

3,4,6-tri-O-benzyl-α-D-mannopyranosyl]-α-D-mannopyranoside (0.2 g, 0.11 mmol) in 

THF (5 mL) was added catalytic amount of (1,5-

Cyclooctadiene)bis(methyldiphenylphosphine)iridium(I) hexafluorophosphate (10 mg, 
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0.011 mmol). The stirred solution was degassed, placed under N2 and degassed. The 

reaction mixture was placed under H2 for 5 min and degassed once more to prevent 

further reduction.  The mixture was stirred at 25 oC for 30 min under N2 and then 

concentrated under reduced vacuum. The crude residue was purified by flash silica 

column chromatography to afford the desired product 13 (0.19 g, 93 %). 

Rf (ethyl acetate/haxane):  0.70 (25/75)  

1H NMR (CDCl 3, 400 MHz): δ (ppm) 7.30-7.16 (m, 60H), 6.18 (d, 1H, J =12 Hz), 

5.50 (s, 1H), 5.17 (s, 1H), 5.02-4.98 (m 1H), 4.93 (t, 2H, J = 6.4 Hz), 4.81 (t, 2H, J = 

10.4 Hz), 4.74 (br, 2H), 4.66-4.65 (m, 4H), 4.63 (d, 1H, J = 10.4 Hz), 4.58 (d, 1H, J = 

11.2 Hz), 4.51-4.40 (m, 7H), 4.35 (d, 1H, J = 10.8 Hz), 4.27-4.25 (m, 2H), 4.21-4.18 

(m, 2H), 4.06 (t, 1H, J = 8 Hz), 4.01-3.90 (m, 7H), 3.86 (d, 2H, J = 9.2 Hz), 3.80-3.71 

(m, 3H), 3.66 (d, 1H, J = 10.4 Hz), 3.61-3.48 (m, 6H), 3.45 (dd, 1H, J = 7.2, 2 v), 3.38 

(d, 2H, J = 4.4 Hz), 2.07 (s, 3H), 1.51 (d, 3H, J = 6.8 Hz).    

13 C NMR (CDCl3, 100 MHz): δ (ppm) 170.2 (C=O), 144.0, [139.1, 139.1, 138.9, 

138.9, 138.8, 138.8, 138.6, 138.3, 138.2 (Cq-Aryl)], [128.5-127.3 (m, CH-Aryl)], 

103.9, [103.0, 100.4, 99.6, 98.7 (CHanomeric)], 80.0, 79.7, 79.2, 78.4, 75.8, 75.4, 75.1, 

74.9, 74.6, 74.6, 73.5, 73.4, 73.3, 73.0, 72.9, 72.8, 72.2, 72.1, 72.1, 69.5, 69.4, 69.3, 
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69.1, 68.5, 21.4, 12.6. 

HRMS-MALDI (m/z):  [M] +Calcd for C113H120O22, 1828.8271; Found, 1828.4955. 
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Synthesis of 3-(perfluorooctyl)propanyloxybutenyl-3,6-di-O-benzyl-4-O-[2,3,4,6,-

tetra-O-benzyl-β-D-galactopyranosyl]-2-O-[2-O-(2-O-acetyl-3,4,6-tri-O-benzyl-α-

D-mannopyranosyl)-3,4,6-tri-O-benzyl-α-D-mannopyranosyl]-α-D-

mannopyranosyl phosphate 13-1. 

To a vinyl-O-3,6-di-O-benzyl-4-O-[2,3,4,6,-tetra-O-benzyl-β-D-galactopyranosyl]-

2-O-[2-O-(2-O-acetyl-3,4,6-tri-O-benzyl-α-D-mannopyranosyl)-3,4,6-tri-O-benzyl-α-

D-mannopyranosyl]-α-D-mannopyranoside 12 (0.1 g, 0.06 mmol), and mercury oxide 

(17 mg, 0.14 mmol) in 4 mL of acetone/H2O (10/1) was added a solution of mercuric 
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chloride (16 mg, 0.06 mmol) in 3 mL of acetone/H2O (10/1) for 1 min. The reaction 

mixture was stirred at 25 oC for 3 h. The crude residue was filtered through celite and 

diluted with dichloromethane (5 mL). The organic layer was washed with sat. KI (1 x 

5 mL), H2O (1 x 5 mL) and brine (1 x 5 mL). The solvent was dried with Na2SO4 and 

concentrated under reduced vacuum. The crude residue was purified by flash silica 

column chromatography to afford the hydrolyzed product (82 mg, 84 %). 

The hydrolyzed product (50 mg, 0.03 mmol) and triethylammonium 3-

(perfluorooctyl)propanyloxybutenyl- hydrogen phosphonate (20 mg, 0.03 mmol) were 

coevaporated with pyridine and dried under high vacuume for 30 min. To a solution of 

this mixture in pyridine (3 mL) was added a solution of pivaloyl chloride (0.007 mL, 

0.06 mmol) in pyridine (0.3 mL) and then the mixture was stirred at 25 oC for 30 min 

under nitrogen gas environment. Prydine was removed under reduced vacuum and the 

crude product was purified by flash silica column chromatography (with triethyamine) 

to afford the desired product 13-1 (59 mg, 84 %). 

Rf (10 % MeOH in DCM):  0.69 

1H NMR (CDCl 3, 400 MHz): δ (ppm) 7.26-7.05 (m, 60H), 5.64-5.59 (m, 1H), 5.53-

5.45 (m, 3H), 5.13 (d, 1Hanomeric, J = < 1 Hz), 4.91 (d, 1H, J = 12 Hz), 4.79 (d, 1H, J = 
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8 Hz), 4.74 (d, 1H, J = 8 Hz), 4.67-4.57 (m, 5H), 4.54-4.36 (m, 11H), 4.29 (t, 2H, J = 

12 Hz), 4.23 (d, 1H, J = 8 Hz), 4.20 (d, 1H, J = 8 Hz), 4.14 (d, 1H, J = 12 Hz), 4.09-

4.05(m, 2H), 4.00-3.94 (m, 2H), 3.90-3.78 (m, 11H), 3.73-3.52 (m, 6H), 3.41 (d, 2H, J 

= 12 Hz), 3.34-3.27 (m, 4H), 2.12 (m, 2H), 2.03 (s, 3H), 1.76-1.69 (m, 2H).   

13 C NMR (CDCl3, 100 MHz): δ (ppm) 170.1 (C=O), [139.1, 139.0, 138.7, 138.5, 

138.4, 138.2, 138.1, 138.0, 138.0, 138.0 (Cq-Aryl)], [128.3-127.0 (m, CH-Aryl)], 

[103.2, 100.8, 99.3. 95.0 (CHanomeric)], 82.6, 79.9, 79.6, 75.2, 75.1, 74.7, 74.3, 74.1, 

73.2, 73.1, 73.0, 72.6, 72.5, 72.0, 71.9, 71.8, 68.7, 68.7, 68.5, 68.1, 66.4, 61.7, 61.7, 

49.5, 46.2 (NEt3), 28.1, 27.9, 27.7, 21.1, 8.6 (NEt3). 

31P NMR (162 MHz, CDCl3): δ -2.39 

HRMS-MALDI (m/z):  [M-NEt3] Calcd for C125H128F17O26P 2400.2848; Found, 

2400.7329. 
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CHAPTER 5 

Synthesis of multivalent tuberculosis and Leishmania-associated capping 

carbohydrates and evaluation of structure-dependent immune responses in 

IL-12 production 

A paper to be submitted to Journal of the American Chemical Society   

Eun-Ho Song, Alex O. Osanya, Christine A. Petersen, and Nicola L. Pohl 

 

Microbacterium tuberculosis is an intracellular pathogen which survives in 

macrophages and remains as one of the severe infectious diseases due to large number 

of infections with more than 2 million deaths annually worldwide.1 Leishmaniasis is 

also an infectious disease caused by protozoan parasites of the genus Leishmania. 

Leishmaniasis is endemic over much of 88 countries in Africa, India, southern Europe, 

and Central and South America.2 Importantly, M. tuberculosis3 and leishmaniasis4 are 

particularly problematic in these areas as a reactivating infection in AIDS patients. 

Despite considerable progress devoted to preventing and controlling tuberculosis and 

leishmaniasis, the disease still remains beyond efficient medical treatments such as 

vaccines. Therapies, including vaccines, have to deal with the parasites’ ability to hide 
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in human macrophage cells—the white bloods cells that usually engulf and eliminate 

foreign materials. Herein we present the synthesis and development of new chemical 

tools which demonstrates that only simple changes in parasite-associated surface 

oligosaccharides are sufficient to change cellular immune responses and thereby let a 

parasite hide from immune surveillance. 

The most abundant molecules found on the cell surfaces of bacteria, parasites and 

viruses are carbohydrates.5 Due to structural distinctions among host cells and the 

distribution of carbohydrates on the outer surface of the cell, structure-function 

relationships involving carbohydrates have drawn attention amongst both synthetic 

organic chemists and immunologists. However, obtaining well-defined carbohydrate 

structures has been challenging due to limitations associated with current isolation 

protocols.6 Simple commercially available sugars can be readily attached to beads for 

the identification of monosaccharide-dependent immunity7; however, these protocols 

do not lend themselves readily to larger structurally well-defined oligosaccharides.  
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Figure 1. Capping structure in lipoarabinomannan (LAM) of M. tuberculosis and 

lipophosphoglycan (LPG) of Leishmania. 

 

As shown in Figure 1, trimannose is one of the major components both in LPG of 

Leishmania parasites8 and LAM of M. tuberculosis cell wall.9 To date, several 

synthetic approaches have been reported to construct Leishmania capping structures 

including oligomannose10 and branched oligosaccharide11 for the purpose of synthetic 

challenge or vaccine development12. We wanted to develop a viable route to a range of 

Leishmania capping structures including trimannose and lactose as a control.   

With this purpose, we envisioned making essentially artificial parasites of the same 

size (one micron) as Leishmania that contain only the structurally well-defined 
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capping polysaccharide associated with pathogens. The key challenge in the synthesis 

of artificial pathogens is construction of multivalent effect on latex beads in order to 

give more chance to induce immune responses.   

 

Results and discussion 

Trimannose can be prepared fluorous solid-phase extraction (FSPE)-based iterative 

synthesis as reported in literature10 (Scheme 1). Mannose trichloroacetimidate 1 was 

prepared from tri-O-benzyl orthoester intermediate13. Acid (TMSOTf)-activated 

glycosylation of mannose trichloroacetimidate with fluorous-tag gave fluorous-tagged 

disaccharide for further iterative synthesis of capping structures. This iterative 

synthesis using fluorous-solid-phase extraction (FSPE) takes advantage of the fact 

that desired oligosaccharide can be prepared without conventional slica-column 

purification.14 The fluorous-tag in trimannose 2 was then cleaved with ozonolysis and 

subsequent oxidation with Jones reagent facilitates further coupling reaction of 

carboxylated-sugar with amine-functionalized beads. Global deprotection under 

Na/NH3 at -78 oC furnished fully deprotected trimannose 4 in good yield.  

Carboxylated-lactose was also efficiently prepared through conventional silica-
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column purification. (see Supporting information)  

With the capping sugar and the control sugar lactose in hand, a suitable one micron-

sized support was required for multivalent display of these sugars. Latex beads are 

commonly used in immunoassays due to their inertness and commercial availability. 

Moreover, beads with high concentrations of imbedded fluorophores enable various 

fluorescent assays.15  For example, such beads have been utilized for agglutination 

tests for the detection of antibodies16 or investigation of heparin-binding properties17, 

for the analysis of blood cell populations18, for the identification of specific cell 

membrane markers19 and for the measurement of sugar particle-induced immunity7
. 
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Scheme 1. Synthesis of multivalent tuberculosis and Leishmania capping structures 

on latex beads. 

 

In this regard, we used commercially available Latex beads B0 (microspheres, 1µm 

diameter and yellow-green fluorescent) derivatized with carboxylate groups (3.5 x 10-

4 mmol carboxylate groups per mL). The chosen size of FITC-labeled latex beads 

mimics the size of the Leishmania parasite and allows use of a common 

immunofluorescent assay for the observation of the possible uptake of beads by 

macrophages. In order to avoid spatial proximity of sugars on the surface of the beads 

and improve the accessibility of sugars to possible macrophage binding partners, 

ethylenediamine as a spacer was attached to the carboxylated bead surface under 

standard peptide coupling conditions. Unfortunately, solvents for the coupling 

reaction were severely limited due to difficulties associated with the stability of the 

apparently noncovalent FITC linkage in organic solvents. Therefore, the choice of 

suitable solvent was an important consideration for both obtaining quantitative yield 

in coupling reaction and designing synthetic routes for sugars. Combined condition 

for coupling using 1-ethyl-3-[3-dimethylaminopropyl]carbodiimide hydrochloride 
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(EDC) and N-hydroxysuccinimide (NHS)20 in deionized water was utilized to make 

peptide linkages (Scheme 2).  

The subsequent coupling reaction of various capping structures containing the 

carboxylic acid linker with amine spacer on the beads gave Leishmania-associated 

capping carbohydrate coated-beads (Figure 1). Each coupling step was repeated twice 

with 30 ~ 50 equivalent of sugars to obtain a complete reaction. The density of sugar 

was calculated by given density of carboxylates (1.296 x 10-14 mmol / bead). As for 

coupling steps, Kaiser colorimetric test was used as an indicator of coupling reaction 

progress.21  

To evaluate structure-dependent immune responses, lactose coated beads B1 and 

trimannose-coated beads B2 were initially incubated with murine macrophages for the 

analysis of cytokine production including Interleukin-12 (IL-12).22 IL-12 plays a 

significant role in the link between innate and adaptive immunity 
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Figure 2. Effect of cap sugar coated

coated beads, and B2 = trimannose

by murine macrophage 

[Asterisks denote a significant change between the TLR2 blocking from cont

isotype and/or non-blocking

142 

Effect of cap sugar coated-latex beads (B0 = latex bead, B1 = lactose 

coated beads, and B2 = trimannose-coated beads)  on the production of IL

 cell line (J774) (mφ) stimulated by LPS and IFN

[Asterisks denote a significant change between the TLR2 blocking from cont

blocking-stimulation only treated cells (p<0.05) via Student’s 

 

 

(B0 = latex bead, B1 = lactose 

on the production of IL-12p40 

) stimulated by LPS and IFNγ. 

[Asterisks denote a significant change between the TLR2 blocking from control 

stimulation only treated cells (p<0.05) via Student’s t-
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test.]  

 

As shown in Figure 2, comparable levels of IL12-p40 under two different 

environments including no blocking agents and isotype IgG1 antibody were produced 

when murine macrophages were stimulated by lactose-coated beads, whereas IL12 

production stimulated by trimannose-coated beads was significantly diminished. 

These results indicate that structure differences in carbohydrates exhibit clear 

differences in the activation of innate immune responses induced by only differences 

in the carbohydrate structure.  

In order to obtain more information about structure-dependent immune responses, 

other capping structures were also efficiently prepared through conventional silica-

column purification for galactose23 or FSPE-based purification for dimannose7, 

branched tri-and tetrasaccharide.24  
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Scheme 2. Iterative synthesis of fluorous-tagged Leishmania tetrasaccaride 

 

Branched Leishmania capping structures including trisaccharide 3 and 

tetrasaccharide 4 was also prepared either through iterative synthesis or automation 

platform.22 The fluorous-tag in tetrasaccharide was then cleaved with ozonolysis and 

subsequent oxidation with Jones reagent facilitates further coupling reaction of 

carboxylated-sugar with amine-functionalized beads. Global deprotection under 

Na/NH3 at -78 oC furnished fully deprotected saccharides (3-2 and 4-2) in good yield 

(Scheme 3).  

Other capping structures were also efficiently prepared through conventional silica-

column purification for galactose 5 or FSPE-based purification for dimannose 6.  

Carboxylated-Leishmania capping structures were then displayed on the latex beads 

under optimized coupling conditions (Figure 3). 
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L. donovani capping structure 
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Figure 3. Multivalent Leishmania capping structures on latex beads 

 

Conclusion 

In conclusion, we demonstrated that the protocol of preparation of artifical 

parasites including well defined tuberculosis and Leishmania-associated capping 

structures such as trimannose and lactose enabled the study of structure-dependent 

immune reponses. In particluar, fluorous phase-based iterative synthesis provides 

not only a convenient purification step but also an easy transformation to 

carboxylic acid in order to display capping structures on the latex beads surface. 
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More importantly, our results with preminary IL-12 production studies showed that 

structure differences in carbohydrates produced a distinct differences in IL-12 p40 

producton.  

These results could provide a standard strategy for unveiling innate immune 

mechanisms induced by specific carbohydrate structure 

 

Experimental section 

General methods 

Solvents were reagent grade and in most cases dried prior to use. All other 

commercially available reagents were used as received unless otherwise noted. The 

organic extracts were dried over anhydrous MgSO
4
. Tetrahydrofuran (THF) was 

distilled from lithium aluminum hydride (LiAlH
4
) prior to use. Methylene chloride 

(CH
2
Cl

2
), and triethylamine (Et

3
N) were distilled from calcium hydride. Diethyl ether 

(Et
2
O) was distilled from sodium-benzophenone ketyl.  

  1H and 13C NMR spectra were obtained at 400 MHz and 100 MHz on Varian VXR-

400 NMR or on Bruker DRX-400 NMR. Mass spectra (MS) were recorded on an 

Applied Biosytems DE-Pro MALDI mass analyzer or an Applied Biosytems 
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QSTAR® XL Hybrid LC/MS/MS System. Chemical shifts are reported in parts per 

million downfield relative to tetramethylsilane (δ 0.00) and coupling constants are 

reported in Hertz (Hz). The following abbreviations are used for the multiplicities: s = 

singlet; d = doublet; t = triplet; q = quartet; m = multiplet; and br = broad.   

 

Synthesis of Fully deprotected carboxylated-Leishmana capping structures. 
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Synthesis of Carboxymethyl-4-O-[2,3,4,6-tetra-O-acetyl-β-D-glucopyranosyl]-

2,3,6-tri-O-acetyl-β-D-galactopyranoside 1. 

To a solution of 2-propynyl-4-O-[2,3,4,6-tetra-O-acetyl-β-D-glucopyranosyl] - 

2,3,6- tri-O-acetyl-β-D-galacto-pyranoside25  (0.5g, 0.7 mmol) in the mixture of CCl4 

(3 mL), CH3CN (3 mL), and H2O (4 mL) is added NaIO4 (1.27 g, 5.6 mmol). To this 

mixture was added RuCl3.H2O (3.1 mg, 2.2 mol %) and the reaction mixture was 

stirred at 25 oC for 2 h. After dilution with 10 mL of DCM, the reaction mixture was 

filtered through a Celite pad. The aqueous layer was extracted with twice with DCM 

and then organic layer was washed with water and brine. The crude mixture was 
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obtained after drying with Na2SO4 followed by concentration under reduced vacuum. 

The crude product was purified to obtain the desired product 1(0.47 g, 91 %) by silica 

column chromatography 

Rf (ethyl acetate/haxane): 0.30 (70/30) 

1H NMR (CDCl 3, 400 MHz): δ (ppm) 5.34 (d, 1H, J = 2.4 Hz), 5.22 (t, 1H, J = 9.2 

Hz), 5.09 (t, 1H, J = 8 Hz), 4.97-4.93 (m, 2H), 4.62 (d, 1H, J = 7.6 Hz), 4.50-4.47 (m, 

2H), 4.29 (s, 2H), 4.11-4.04 (m, 3H), 3.87 (t, 1H, J = 6.4 Hz), 3.80 (t, 1H, J = 9.2 Hz), 

3.65-3.61 (m, 1H), 2,14 (s, 3H), 2.11 (s, 3H), 2.05 (s, 3H), 2.04 (s, 3H), 2.03 (s, 3H), 

2.03 (s, 3H), 1.93 (s, 3H). 

13 C NMR (CDCl3, 100 MHz): δ (ppm) 170.6, 170.6, 170.3, 170.3, 170.1, 169.9, 

169.2, [101.2, 100.4 (CHanomeric)], 76.2, 73.1, 72.5, 71.4, 71.1, 70.9, 69.2, 66.8, 65.5, 

61.9, 61.0, 21.0, 21.0, 20.9, 20.9, 2.08, 20.7.  

HRMS-MALDI (m/z): [M+Na]+Calcd for C28H38NaO20, 717.5791; Found, 717.6184. 
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Synthesis of Carboxymethyl-4-O-(β-D-galactopyranosyl)-β-D-glucopyranoside 

2. 
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To a carboxymethyl-4-O-[2,3,4,6-tetra-O-acetyl-β-D-glucopyranosyl]-2,3,6-tri-O-

acetyl-β-D-galacto-pyranoside (1) (0.4 g, 0.57 mmol) in MeOH (5 mL) was added Na 

(27 mg, 1.14 mmol) and stirred at 25 oC for 2 h. The reaction mixture was neutralized 

with Dowex-ion-exchange resin. The desired (2) was obtained through Celite 

filteration followed by evaporation of solvent under reduced pressure in good yield 

(0.21 g, 89 %).  

1H NMR (CDCl 3, 400 MHz): δ (ppm) 4.46 (d, 1H, J = 16.4 Hz), 4.30-4.23 (m, 2H), 

3.81 (d, 1H, J = 3.2 Hz). 

13 C NMR (CDCl3, 100 MHz): δ (ppm) 173.0, 170.8, 170.5, 17.4, 170.2, 100.4 

(CHanomeric), 71.1, 70.7, 68.6, 67.1, 65.0, 61.4, 21.0, 20.9, 20.8, 20.8. 

HRMS-ESI (m/z): [M+Na]+Calcd for C14H24NaO13, 423.1115; Found, 423.0942. 
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Synthesis of Carboxymethyl-2,3,4,6-tetra-O-acetyl-β-D-galactopyranoside 3. 

To a solution of 2-propynyl-2,3,6-tri-O-acetyl-β-D-galacto-pyranoside20 (0.5 g, 1.29 

mmol) in the mixture of CCl4 (3 mL) , CH3CN (3 mL), and H2O (4 mL) is added 
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NaIO4 (2.2 g, 10.3 mmol). To this mixture was added RuCl3.H2O (6 mg, 2.2 mol %) 

and the reaction mixture was stirred at 25 oC for 2 h. After dilution with 10 mL of 

DCM, the reaction mixture was filtered through a Celite pad. The aqueous layer was 

extracted with twice with DCM and then organic layer was washed with water and 

brine. The crude mixture was obtained after drying with Na2SO4 followed by 

concentration under reduced vacuum. The crude product was purified to obtain the 

desired product (3) (0.42 g, 81 %) by silica column chromatography  

Rf (ethyl acetate/haxane): 0.25 (70/30) 

1H NMR (CDCl 3, 400 MHz): δ (ppm) 5.41 (d, 1H, J = 2.8 Hz), 5.25 (dd, 1H, J = 7.9, 

2.5 Hz), 5.06 (dd, 1H, J = 10.4, 3.3 Hz), 4.62 (d, 1H, J = 7.9), 4.36 (s, 2H), 4.20-4.09 

(m, 2H), 3.94 (t, 1H, J = 6.7 Hz), 2.16 (s, 3H), 2.09 (s, 3H), 2.05 (s, 3H), 1.99 (s, 3H). 

13 C NMR (CDCl3, 100 MHz): δ (ppm) 173.0, 170.8, 170.5, 170.4, 170.2, 100.4 

(CHanomeric), 71.1, 70.7, 68.6, 67.1, 65.0, 61.4, 21.0, 20.9, 20.8, 20.8. 

HRMS-MALDI (m/z): [M+Na]+Calcd for C16H22NaO12,429.1009; Found,  
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Synthesis of Carboxymethyl-β-D-galactopyranoside 4. 

To a carboxymethyl-2,3,4,6-tetra-O-acetyl-β-D-galactopyranoside (3) (0.4 g, 0.99 

mmol) in MeOH (5 mL) was added Na (45 mg, 1.98 mmol) and stirred at 25 oC for 2 

h. The reaction mixture was neutralized with Dowex-ion-exchange resin. The desired 

product (4) was obtained through Celite filteration followed by evaporation of solvent 

under reduced pressure in good yield (0.21 g, 89 %).  

1H NMR (CD 3OD, 400 MHz): δ (ppm) 4.46 (d, 1H, J = 16.4 Hz), 4.30-4.23 (m, 2H), 

3.81 (d, 1H, J = 3.2 Hz), 3.75-3.68 (m, 2H), 3.60-3.53 (m, 1H), 3.51-3.47 (m, 2H). 

13 C NMR (CD3OD, 100 MHz): δ (ppm) 173.1, 103.4 (CHanomeric), 75.7, 73.4, 71.1, 

69.0, 65.5, 61.3. 

HRMS-ESI (m/z): [M+Na]+Calcd for C8H14NaO8, 261.0586; Found, 261.0463. 
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Synthesis of Carboxymethyl-3,4,6-tri-O-benzyl-2-O-(2-O-acetyl-3,4,6-tri-O-

benzyl-αααα-D-mannopyranosyl)-αααα-D-mannopyranoside 5. 

To a solution of 3-(perfluorooctyl)propanyloxybutenyl-3,4,6-tri-O-benzyl-2-O-(2-O-

acetyl-3,4,6-tri-O-benzyl-α-D-mannopyranosyl)-α-D-mannopyranoside (0.2 g, 0.15 

mmol) in DCM was bubbled O3 at -78 oC for 5 min. The light-blue solution was 

treated with PPh3 (58 mg, 0.23 mmol) and was allowed to warm to room temperature. 

After 30 min, the crude aldehyde product was obtained after concentration under 

reduced vacuum. To a solution of aldehyde product in acetone was added Jones 

reagent (0.16 mL, 0.13 mmol) and the mixture was stirred for 30 min. After TLC 

analysis, excess reagent was quenched with 2-propanol and sold was filtered off 

through a Celite pad. The pure product 5 (0.12 g, 89 %) was obtained after 

concentration under reduced vacuum followed by purified through silica column 

chromatography (Hexane:Ethyl Acetate = 1:2). 

Rf (ethyl acetate/haxane): 0.30 (70/30) 

1H NMR (CDCl 3, 400 MHz): δ (ppm) 7.33-7.15 (m, 30H), 5.52 (s, 1H), 5.07 (s, 1H), 

4.98 (s, 1H), 4.83 (dd, 2H, J = 10.8, 6 Hz), 4.68 (s, 2H), 4.67-4.60 (m, 3H), 4.53-4.39 

(m, 5H), 4.10-4.02 (m, 3H), 3.96-3.90 (m, 3H), 3.80-3.65 (m, 7H), 2.11 (s, 3H). 
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13 C NMR (CDCl3, 100 MHz): δ (ppm) 173.5 (C=O), 170.5 (C=O), [138.7, 138.6, 

138.4, 138.3 (Cq-Aryl)], 128.7-127.8 (m, CH-Aryl), [99.8, 99.0 (CHanomeric)], 79.7, 

78.4, 75.4, 74.7, 73.7, 73.6, 72.7, 72.4, 72.3, 72.2, 69.4, 69.2, 69.1, 63.7, 21.4 (CH3). 

HRMS-MALDI (m/z):  [M+Na]+Calcd for C58H62NaO14, 1005.4037; Found, 

1005.4289 
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Synthesis of Carboxymethyl-2-O-(2-O-α-D-mannopyranosyl)-α-D- 

mannopyranoside 6 

To a carboxymethyl-3,4,6-tri-O-benzyl-2-O-(2-O-acetyl-3,4,6-tri-O-benzyl-α-D-

mannopyranosyl)-α-D-mannopyranoside (5) (0.1 g, 0.11 mmol) was dissolved in THF 

(8 mL) and MeOH (0.5 mL) in a flask. Liquid ammonia (20 mL) was then condensed 

into the flask at -78 oC. Sodium metal was added in several portions until the solution 

was dark blue. The dark blue solution was stirred at -78 oC for 30 min. Following 
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disappearance of the dark blue color, EtOH (3 mL) was added and ammonia was 

blown off with a stream of air. The solution was then neutralized with acidic Dowex-

resin to pH 7 and the resin was filtered off through a Celite pad. The desired (6) was 

obtained through evaporation of solvent under reduced pressure in good yield (34 mg, 

75 %).   

1H NMR (CD 3OD, 400 MHz): δ (ppm) 5.15 (s, 1H), 4.98 (s, 1H), 4.24 (m, 2H), 

3.96-3.57 (m, 12H). 

13 C NMR (CD3OD, 100 MHz): δ (ppm) 172.3 (C=O), [102.9, 98.7 (CHanomeric)], 

78.8, 78.8, 74.0, 73.7, 71.2, 70.6, 67.4, 63.7, 63.4, 61.8, 61.7. 

HRMS-ESI (m/z): [M+Na]+Calcd for C14H24NaO13, 423.1115; Found, 423.0923. 
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Synthesis of Carboxymethyl-3,4,6-O-benzyl-2-O-[2-O-(2-O-acetyl-3,4,6-tri-O-

benzyl-αααα-D-mannopyranosyl)-3,4,6-tri-O-benzyl-αααα-D-mannopyranosyl]-αααα-D-

mannopyranoside 7. 

To a solution of 3-(perfluorooctyl)propanyloxybutenyl-3,4,6-tri-O-benzyl-2-O-(2-O-

acetyl-3,4,6-tri-O-benzyl-α-D-mannopyranosyl)-α-D-mannopyranoside (0.2 g, 0.11 

mmol) in DCM was bubbled O3 at -78 oC for 5 min. The light-blue solution was 

treated with PPh3 (42 mg, 0.16 mmol) and was allowed to warm to room temperature. 

After 30 min, the crude aldehyde product was obtained after concentration under 

reduced vacuum. To a solution of aldehyde product in acetone was added Jones 

reagent (0.11 mL, 0.08 mmol) and the mixture was stirred for 30 min. After TLC 

analysis, excess reagent was quenched with 2-propanol and sold was filtered off 

through a Celite pad. The pure product (7) (0.13 g, 87 %) was obtained after 

concentration under reduced vacuum followed by purified through silica column 

chromatography (Hexane:Ethyl Acetate = 1:2). 

Rf (ethyl acetate/haxane):  0.13 (50/50) 

1H NMR (CDCl 3, 400 MHz): δ (ppm) 7.26-7.12 (m, 45H, aromatics), 5.52 (t, 1H, J = 

2.0 Hz), 5.17 (s, 1H), 5.03 (d, 1H, J = 8.0 Hz), 4.83 (d, 1H, J = 10.8 Hz), 4.80 (d, 1H, 
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J = 10.8 Hz), 4.62-4.41 (m, 14H), 4.33 (d, 1H, J = 12.0 Hz), 4.10-4.05 (m, 3H), 4.05-

3.88 (m, 6H), 3.77-3.63 (m, 8H), 3.53 (d, 1H, J = 10.4 Hz), 2.12 (s, 3H). 

13 C NMR (CDCl3, 100 MHz): δ (ppm) 172.4, 170.2, [138.6, 138.5, 138.5, 138.4, 

138.3, 138.3, 138.1 (Cq-Aryl)], 134.1 (CH2CH=CH2), 128.5 – 127.6 (m, CH-Aryl), 

[100.9, 99.5, 99.3 (CHanomeric)], 79.1, 78.1, 75.2, 75.2, 75.0, 74.9, 74.6, 74.3, 73.4, 

72.6, 72.5, 72.3, 72.2, 72.0, 71.9, 69.8, 69.2, 68.9, 68.8,  

HRMS-ESI (m/z): [M+Na]+Calcd for C85H90NaO19, 1437.5974; Found, 1437.5097. 
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Synthesis of Carboxymethyl-2-O-[2-O-(2-O-α-D-mannopyranosyl)-α-D- 

mannopyranosyl]-α-D-mannopyranoside 8. 

To a carboxymethyl-3,4,6-O-benzyl-2-O-[2-O-(2-O-acetyl-3,4,6-tri-O-benzyl-α-D-

mannopyranosyl)-3,4,6-tri-O-benzyl-α-D-mannopyranosyl]-α-D-mannopyranoside 7 
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(0.1 g, 0.07 mmol) was dissolved in THF (8 mL) and MeOH (0.5 mL) in a flask. 

Liquid ammonia (20 mL) was then condensed into the flask at -78 oC. Sodium metal 

was added in several portions until the solution was dark blue. The dark blue solution 

was stirred at -78 oC for 30 min. Following disappearance of the dark blue color, 

EtOH (3 mL) was added and ammonia was blown off with a stream of air. The 

solution was then neutralized with acidic Dowex-resin to pH 7 and the resin was 

filtered off through a Celite pad. The desired (8) was obtained through evaporation of 

solvent under reduced pressure in good yield (29 mg, 72 %).   

1H NMR (CD 3OD, 400 MHz): δ (ppm) 5.29 (s, 1H), 5.11 (s, 1H), 4.97 (s, 1H), 4.02-

3.53 (m, 20H).  

13 C NMR (CD3OD, 100 MHz): δ (ppm) 176.3 (C=O), [102.7, 101.1, 98.4 

(CHanomeric)], 79.1, 78.9, 73.7, 73.7, 73.5, 71.2, 70.8, 70.7,70.7, 67.9, 67.8, 67.5, 66.0, 

61.8, 61.7, 61.6. 

HRMS-ESI (m/z): [M+Na]+Calcd for C20H34NaO18, 585.1643; Found, 585.1528. 
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Synthesis of Carbpxymethyl-3,6-di-O-benzyl-4-O-[2,3,4,6,-tetra-O-benzyl-β-D-

galactopyranosyl-]-2-O-[2-O-acetyl-3,4,6-tri-O-benzyl-α-D-mannopyranosyl]-α-

D-mannopyranoside 9.

To a solution of 3-(perfluorooctyl)propanyloxybutenyl-3,6-di-O-benzyl-4-O-

[2,3,4,6,-tetra-O-benzyl-β-D-galactopyranosyl-]-2-O-[2-O-acetyl-3,4,6-tri-O-benzyl-

α-D-mannopyranosyl]-α-D-mannopyranoside (0.2 g, 0.11 mmol) in DCM was 

bubbled O3 at -78 oC for 5 min. The light-blue solution was treated with PPh3 (42 mg, 

0.16 mmol) and was allowed to warm to room temperature. After 30 min, the crude 

aldehyde product was obtained after concentration under reduced vacuum. To a 

solution of aldehyde product in acetone was added Jones reagent (0.11 mL, 0.08 

mmol) and the mixture was stirred for 30 min. After TLC analysis, excess reagent was 

quenched with 2-propanol and sold was filtered off through a Celite pad. The pure 

product 9 (0.13 g, 85 %) was obtained after concentration under reduced vacuum 
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followed by purified through silica column chromatography (Hexane:Ethyl Acetate = 

1:2). 

Rf (ethyl acetate/haxane): 0.12 (50/50) 

1H NMR (CDCl 3, 400 MHz): δ (ppm) 7.29-7.13 (m, 45H, aromatics), 5.45 (s, 1H), 

5.08 (s, 1H), 4.94 (d, 1H, J = 4 Hz), 4.90 (d, 1H, J = 12 Hz), 4.84-4.76 (m, 3H), 4.71-

4.44 (m, 9H), 4.41-4.25 (m, 7H), 4.19-4.15 (m, 3H), 3.95-3.87 (m, 3H), 3.80-3.64 (m, 

7H), 3.50 (t, 1H, J = 12 Hz), 3.43-3.38 (m, 2H), 2.07 (s, 3H). 

13 C NMR (CDCl3, 100 MHz): δ (ppm) 173.3, 170.0, [139.2, 139.1, 139.0, 138.8, 

138.6, 138.5, 138.3, 138.2, 138.1 (Cq-Aryl)], 128.5–127.2 (m, CH-Aryl), [103.7, 99.3, 

99.1 (CHanomeric)], 82.8, 80.0, 78.5, 75.4, 75.3, 75.1, 74.8, 74.5, 73.5, 73.3, 73.1, 72.9, 

72.8, 72.5, 72.2, 72.1, 69.1, 69.0, 68.6, 68.4, 84.1, 21.3.  

HRMS-MALDI (m/z):  [M+Na]+Calcd for C85H90NaO19, 1437.5974; Found, 

1437.7109.. 
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Synthesis of Carboxymethyl-4-O-[β-D-galactopyranosyl]-2-O-[2-O-α-D- 

mannopyranosyl]-α-D-mannopyranoside 10. 

To a carbpxymethyl-3,6-di-O-benzyl-4-O-[2,3,4,6,-tetra-O-benzyl-β-D- 

galactopyranosyl-]-2-O-[2-O-acetyl-3,4,6-tri-O-benzyl-α-D-mannopyranosyl]-α-D-

mannopyranoside (9) (0.1 g, 0.07 mmol) was dissolved in THF (8 mL) and MeOH 

(0.5 mL) in a flask. Liquid ammonia (20 mL) was then condensed into the flask at -78 

oC. Sodium metal was added in several portions until the solution was dark blue. The 

dark blue solution was stirred at -78 oC for 30 min. Following disappearance of the 

dark blue color, EtOH (3 mL) was added and ammonia was blown off with a stream 

of air. The solution was then neutralized with acidic Dowex-resin to pH 7 and the 

resin was filtered off through a Celite pad. The desired (10) was obtained through 

evaporation of solvent under reduced pressure in good yield (31 mg, 78 %).   

1H NMR (CD 3OD, 400 MHz): 5.10 (s, 1H), 5.02 (s, 1H), 4.34 (d, 1H, J = 7.6 Hz), 

4.19 (br, 1H), 4.04-3.48 (m, 18H). 

13 C NMR (CD3OD, 100 MHz): δ (ppm) 171.0 (C=O), [103.9, 102.7, 99.0 

(CHanomeric)], 77.3, 75.7, 73.8, 73.6, 72.4, 70.6, 69.0, 67.4, 64.0, 61.7, 61.2, 60.8. 

HRMS-MALDI (m/z):  [M+Na]+Calcd for C20H34NaO18, 585.1643; Found, 585.6198 
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Synthesis of Carboxymethyl-3,6-di-O-benzyl-4-O-[2,3,4,6,-tetra-O-benzyl-β-D-

galactopyranosyl]-2-O-[2-O-(2-O-acetyl-3,4,6-tri-O-benzyl-α-D-mannopyranosyl) 

-3,4,6-tri-O-benzyl-α-D-mannopyranosyl]-α-D-mannopyranoside 11. 

To a solution of 3-(perfluorooctyl)propanyloxybutenyl-3,6-di-O-benzyl-4-O-

[2,3,4,6,-tetra-O-benzyl-β-D-galactopyranosyl]-2-O-[2-O-(2-O-acetyl-3,4,6-tri-O-

benzyl-α-D-mannopyranosyl)-3,4,6-tri-O-benzyl-α-D-mannopyranosyl]-α-D-

mannopyranoside (0.2 g, 0.09 mmol) in DCM was bubbled O3 at -78 oC for 5 min. 

The light-blue solution was treated with PPh3 (34 mg, 0.13 mmol) and was allowed to 

warm to room temperature. After 30 min, the crude aldehyde product was obtained 

after concentration under reduced vacuum. To a solution of aldehyde product in 

acetone was added Jones reagent (0.11 mL, 0.08 mmol) and the mixture was stirred 
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for 30 min. After TLC analysis, excess reagent was quenched with 2-propanol and 

sold was filtered off through a Celite pad. The pure product (9) (0.13 g, 85 %) was 

obtained after concentration under reduced vacuum followed by purified through 

silica column chromatography (Hexane:Ethyl Acetate = 1:2). 

Rf (ethyl acetate/haxane): 0.15 (50/50) 

1H NMR (CDCl 3, 400 MHz): δ (ppm) 7.31-7.14 (m, 60H, aromatics), 5.46 (s, 1H), 

5.15 (s, 1H), 4.99 (d, 2H, J = 8 Hz), 4.94 (d, 1H, J = 12 Hz), 4.81 (dd, 2H, J = 8, 4 

Hz), 4.71-4.64 (m, 3H), 4.68 (s, 2H), 4.59-4.56 (m, 3H), 4.51-4.41 (m, 9H), 4.34-4.23 

(m, 5H), 4.13 (d, 1H, J = 16 Hz), 4.00-3.83 (m, 10H), 3.73-3.61 (m, 6H), 3.59-3.50 

(m, 4H), 3.42-3.37 (m, 3H), 2.11 (s, 3H). 

13 C NMR (CDCl3, 100 MHz): δ (ppm) 173.1, 170.3, [139.3, 139.1, 138.9, 138.8, 

138.7, 138.7, 138.6, 138.6, 138.5, 138.5, 138.3, 138.1 (Cq-Aryl)], 128.6–127.3 (m, 

CH-Aryl), [103.6, 100.6, 99.8, 99.5 (CHanomeric)], 82.8, 80.1, 79.6, 75.6, 75.5, .75.3, 

74.9, 74.8, 74.5, 73.5, 73.5, 73.3, 73.1, 72.9, 72.8, 72.7, 72.4, 72.2 72.1, 68.6, 69.0, 

68.6, 64.5, 21.4. 

HRMS-MALDI (m/z):  [M+Na]+Calcd for C112H118NaO24, 1869.7911; Found, 

1870.5026. 
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Synthesis of Carboxymethyl-4-O-[β-D-galactopyranosyl]-2-O-[2-O-(2-O-α-D-

mannopyranosyl)-α-D-mannopyranosyl]-α-D-mannopyranoside 12. 

To a solution of carboxymethyl-3,6-di-O-benzyl-4-O-[2,3,4,6,-tetra-O-benzyl-β-D-

galactopyranosyl]-2-O-[2-O-(2-O-acetyl-3,4,6-tri-O-benzyl-α-D-mannopyranosyl)-

3,4,6-tri-O-benzyl-α-D-mannopyranosyl]-α-D-mannopyranoside (11) (0.1 g, 0.05 

mmol) was dissolved in THF (8 mL) and MeOH (0.5 mL) in a flask. Liquid ammonia 

(20 mL) was then condensed into the flask at -78 oC. Sodium metal was added in 

several portions until the solution was dark blue. The dark blue solution was stirred at 

-78 oC for 30 min. Following disappearance of the dark blue color, EtOH (3 mL) was 

added and ammonia was blown off with a stream of air. The solution was then 

neutralized with acidic Dowex-resin to pH 7 and the resin was filtered off through a 
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Celite pad. The desired (12) was obtained through evaporation of solvent under 

reduced pressure in good yield (36 mg, 90 %).   

1H NMR (CD 3OD, 400 MHz): δ (ppm) 5.33 (s, 1H), 5.08 (s, 1H), 4.97 (s, 1H), 4.35 

(d, 1H, J = 7.2 Hz), 4.13 (s, 2H), 4.05-3.96 (4H), 3.85-3.82 (m, 8H), 3.73-3.49(13H).      

13 C NMR (CD3OD, 100 MHz): δ (ppm) 172.4 (C=O), [103.9, 102.7, 100.9, 98.9 

(CHanomeric)], 79.0, 77.3, 77.3, 75.7, 73.8, 73.6, 73.5, 72.3, 71.3, 71.1, 70.6, 70.6, 69.6, 

69.2, 67.9, 67.4, 63.8, 61.8, 61.3, 60.8. 

HRMS-MALDI (m/z):  [M+Na]+Calcd for C26H44NaO23, 747.6035; Found, 747.6172. 

 

Synthesis of sugar-conjugated latex beads 

 

n
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O

OHO H2N
NH2

EDC, NHS

DI water, 350 rpm
25 oC, 18 h X 2
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H2N Sugar (30 ~ 50 eq)
EDC, NHS

DI water, 350 rpm
25 oC, 18 h X 2
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N
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O

O

R

R = Lactose (B1), Trimannose (B2)
Branched-tri (B3), Brnched-tetra (B4)
Galactose (B5), Dimmanose (B6)

mmol of COOH per 1mL of beads solution
: (2.7 x 10 10 bead / mL) x  ( 1.296 x x10 -14 mmol/bead) = 3.5 x 10 -4 mmol / mL

  To a solution of latex beads (1mL, 2.7 x 1010 beads/ mL) was added EDC (8 mg, 

0.004 mmol) solution (100 µL) in deionized water (DI water) followed by 

ethylenediamin in MES buffer (200 µL). The reaction mixture was stirred at 26 oC for 
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18 h (X 2) and then beads were washed with DI water 2 ~ 3 times for the Kaiser test. 

10 µL of Beads solution was used to perform a Kaiser test (positive:deep purple color). 

To a solution of sugar (30 equiv of dimannose, trimannose, branched trisaccharide and 

tetrasaccharide; 50 equiv of lactose and galactose) in DI water (200 µL) was added 

EDC solution (DI water, 100 µL) followed by NHS solution (DI water, 100 µL). The 

reaction mixture was stirred for 10 min and then combined with amine-functionalized 

latex beads in MES buffer (200 µL). The mixture was stirred at 26 oC for 18 h (X 2) 

and then performed the Kaiser test with 10 µL of Beads solution (negative: dark 

brown color). Sugar-coated latex beads (2.65 x 1010 beads in 1mL of DI water) were 

stored 4 oC refrigerator.  
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CHAPTER 6 

Modification of degradable polymeric particles with carbohydrates 

for the study of in vitro activation of dendritic cells 

Eun-Ho Song1, Brenda R. Carrillo-Conde2, Balaji Narasimhan2 and Nicola L. Pohl1 
(1) Department of Chemistry, Iowa State University,(2)Department of Chemical and 
Biological Engineering, Iowa State University.  
 

Introduction 

Despite extensive efforts on the development of efficient delivery systems for drugs, 

an efficient carrier for drug to specific areas in the human body has been highlighted 

as a prerequisite for the optimization of drug efficiency.1, 2 More recently, attention 

has been focused on the development of vaccine delivery system in order to prevent 

severe bacterial, viral, parasitic and respiratory infectious diseases both in human and 

animal.3, 4  

Several polymers such as copolymers5 of sebacic anhydride (SA) and 1,6-bis-(p-

carboxyphenoxy)hexane (CPH), copolymers6 of 1,6-bis-(p-carboxyphenoxy)hexane 

(CPH) and 1,8-bis(p-carboxyphenoxy-3,6-dioxaoctane (CPTEG) and 

poly(propylacrylic acid) (PPAA)7 as vaccine delivery vehicles have been extensively 

studied in various biomedical researches due to their biocompatibility and degradation 

properties under certain pH ranges and temperatures.  

Among these polymers, polyanhydride copolymers including CPH:SA and 

CPTEG:CPH have been well characterized in order to facilitate bulk-erodible property, 
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induced by hydrophilic-polymers (CPTEG), into the surface erodible polyanhydrides 

(CPH and SA).8 Important features using polyanhydride copolymers are the 

enhancement of controlling erosion kinetics, determined by a combination of erosion 

mechanisms between bulk-eroding and surface-eroding, for controlled drug release 

kinetics and the non-acidic microenvironment produced by degradation of polymers.5, 

9 Moreover, recent study with polyanhydride nanoparticles has shown that size and 

chemistry of particles are important factors in cellular internalization of polymers by 

monocytes.10  

To examine carbohydrate antigen-mediated activation of Dendritic cells (DCs), 

more research has been performed with synthetic carbohydrate ligands as antigens 

capable of activating DCs.11 DCs are immune cells that are the most important 

antigen-presenting cells (APCs) in the early stage of immune responses. Importantly, 

DCs are not only capable of stimulating T cells, but also essential for connecting 

innate and adaptive immunities through Th1 cell or Th2 stimulation.12 Although 

importance of carbohydrate antigens has been addressed in terms of immune 

stimulation, accessibility of carbohydrates on polymeric vehicles is still limited by 

lack of suitable conjugation chemistry and degradable property of polymeric particles. 

Previous erosion studies with polyanhydride copolymers showed that 50:50 

CPTEG:CPH copolymer was significantly degraded (67 % of molecular weight loss) 

in water for 2 days.5 This degradation property provides harsh conditions for the 

modification of polymeric particles.   
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In this study, we demonstrated modification of degradable polyanhydride 

copolymers with lactose and dimannose in order to investigate carbohydrate antigen-

dependent immune responses on uptake and activation of DCs.   

  

Results and discussion  

In order to enhance immune responses of copolymers through activation of DCs, 

carbohydrate antigen coated polymers were prepared. 

 

Synthesis of carboxylated-lactose and dimannose. 

Mercury (II)-catalyzed allylation13 of penta-O-acetyl-1-O-bromide lactose using 

Hg(II)CN and all alcohol produced β-1-O-allylated lactose 1 in high yield (92 % three 

steps) as a precursor for oxidation. One-step oxidation of olefin for the construction of 

carboxylic acid in 2-acetamido-2-dexoy-D-glucose has been reported by using 

ruthenium-catalyzed Sharpless conditions.14, 15 As expected, using excess amounts of 

NaIO4 (8 eq) under ruthenium-catalyzed Sharpless conditions produced the desired 

acid 2 in 91 % yield. But, this oxidation is not suitable in the presence of benzyl 

protections due to transformation of benzyl to benzoyl. Subsequent deacetlyation 

under mild condition using K2CO3 provided fully deprotected disaccharide 3.  
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Scheme 1. Synthesis of carboxy-functionalized lactose. 

 

Iterative synthesis of linear α-1,2-linked dimannose 8 has been reported by using 

fluorous-solid phase extraction (FSPE).16 Each glycosylation was performed with 1.1 

equivalent of trichloroacetimidate donor 417 in toluene at 25 oC for 5 min. Facile 

purification of crude product by FSPE enabled easy preparation of desired linear α-

1,2-linked dimannose 8 in high yield.  
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Scheme 2. Iterative synthesis of fluorous–tagged α-1,2-linked dimannose. 

 

Fully deprotected α-1,2-linked dimannose 10 was obtained by ozonolysis18 of 8, 

followed by global deprotection of 9 under Birch reduction conditions19 (Na, NH3). 
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Scheme 3. Synthesis of carboxy-functionalized dimannose. 

 

Modification of micro- and nanoparticles with lactose and dimannose. 

Polyanhydride copolymers5, 6 and FITC-dextran loaded copolymers20 for confocal 

images of the internalization of polymer in DCs were prepared as reported in 

literatures.  
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- Micro-beads (10 ~ 15 um) : 6.69 x 10-4 COOH/mg
- Nano-beads (200 ~ 600 nm) : 9.59 x 10-4 COOH/mg
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Scheme 4. Modification of polymeric particles with carbohydrates. 

 

Surface modification of polymeric particles is obviously challenging due to physical 

properties of polymers such as degradation and aggregation. In addition, FITC-

labeling can be detached from particles during coupling steps under certain conditions 

such as high temperature and organic solvent because it is not chemically attached to 

polymeric particles.19 To overcome these unfavorable properties of polymeric 

particles, optimization of coupling reaction conditions should be a prerequisite for 
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homogeneous density of carbohydrates on the surface.   

Sugar coated polymeric particles were synthesized from carboxylic acid-

functionalized lactose 3 and dimannose 10 using a procedure that has been used for 

the peptide-type coupling reaction. The control compound, glycolic acid, was also 

carried through same steps to work out a viable protocol (Scheme 1). In order to avoid 

fast degradation of polymeric particles, we performed coupling reactions under 

aqueous conditions rather than under DMF or DCM which is common solvent for 

solid-phase synthesis. Although 1-Ethyl-3-[3-dimethylaminopropyl]carbodiimide 

hydrochloride (EDC)21 has been used as a coupling agent for the purpose of forming 

amide bonds in peptide synthesis, amine reactive O-acylisourea intermediate which is 

activated by EDC can be hydrolyzed by water. In order to increase the efficiency of 

coupling reaction in aqueous condition, we added N-hydroxysuccinimide (NHS)22 to 

form an amine reactive NHS-ester after activating carboxyl group with EDC. 

Ethlylenediamine as a spacer molecule was attached to carboxylated polymeric 

particles in order to increase accessibility of carbohydrates to the surface of particles. 

Peptide-type coupling reaction was repeated twice with relatively short reaction time 

(8 ~ 9 hours) to accomplish a complete coupling reaction. Carbohydrate-coated 
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polymeric particles were prepared through second coupling reaction with carboxylic 

acid-functionalized lactose 3 and dimannose 10 followed by dry under high-vacuum. 

The Kaiser test23 (Ninhydrin color test) was employed as an indicator of coupling 

reaction progress. Quantitative monitoring of reaction can verify sugar loading on the 

beads.24 Surface characterization by X-ray photoelectron spectroscopy (XPS) clearly 

showed an increase of N/C % in carbohydrate modified particles. (by Brenda R. 

Carrillo-Conde). 

In order to evaluate the effect of surface modification with carbohydrate on immune 

responses, DC activation studies such as cell surface marker expression analysis, 

cytokine production analysis and particle uptake studies have been done by 

collaboration partner (Brenda R. Carrillo-Conde) in Chem. Eng. (Dr. Balaji 

Narasimhan). Although significant difference between unmodified particles and 

carbohydrate-modified particles was not observed in cytokine production studies, 

carbohydrate-modified particles showed higher up-regulation in the expression of 

MHC II, CD40, CD86, CD206, and CD209 as well as greater uptake of lactose by 

DCs, a marker for DC stimulation. Because cells that are associated with immune 

system, display a unique set of cell surface markers, identification of cell surface 
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markers plays a significant role in unveiling the type of immune response.  

 

Conclusion 

We demonstrated that the Surface modification of erodible polymeric particles by 

carbohydrates including lactose and dimannose could play an important role in 

activation of innate immunity. Conjugation chemistry using EDC and NHS provided a 

viable route of modification of erodible polymeric beads without significant loss of 

polymeric particles caused by degradation. 

  Importantly, we observed that carbohydrate-modified particles are closely related 

with several important cell surface markers that are capable of inducing adaptive 

immunity (MHC II, CD40, and CD86) or acting as a cell adhesion receptor (CD209). 

These preliminary results showed great promise for the study of the effect 

carbohydrate-modified particles on the regulation of immune responses.  

In order to support to these results, using branched-/linear trisaccharide and longer 

spacer might be helpful to clarify carbohydrate antigen effect on immune responses 

 

Experimental section 
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General methods 

Solvents were reagent grade and in most cases dried prior to use. All other 

commercially available reagents were used as received unless otherwise noted. The 

organic extracts were dried over anhydrous MgSO
4
. Tetrahydrofuran (THF) was 

distilled from lithium aluminum hydride (LiAlH
4
) prior to use. Methylene chloride 

(CH
2
Cl

2
), and triethylamine (Et

3
N) were distilled from calcium hydride. Diethyl ether 

(Et
2
O) was distilled from sodium-benzophenone ketyl.  

 1H and 13C NMR spectra were obtained at 400 MHz and 100 MHz on Varian VXR-

400 NMR or on Bruker DRX-400 NMR. Mass spectra (MS) were recorded on an 

Applied Biosytems DE-Pro MALDI mass analyzer or an Applied Biosytems 

QSTAR® XL Hybrid LC/MS/MS System. Chemical shifts are reported in parts per 

million downfield relative to tetramethylsilane (δ 0.00) and coupling constants are 

reported in Hertz (Hz). The following abbreviations are used for the multiplicities: s = 

singlet; d = doublet; t = triplet; q = quartet; m = multiplet; and br = broad.   

 

Synthesis of carboxylated-lactose and dimannose. 

 



www.manaraa.com

178 

O

OAc

AcO

AcO

OAc

O

OAc

AcO
AcO

O
O

OH

O

OAc

AcO

AcO

OAc

O
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AcO
AcO

O
O

O

                                                                                  

Synthesis of Carboxymethyl-4-O-[2,3,4,6-tetra-O-acetyl-β-D-glucopyranosyl]-

2,3,6-tri-O-acetyl-β-D-galactopyranoside 2. 

To a solution of 2-propynyl-4-O-[2,3,4,6-tetra-O-acetyl-β-D-glucopyranosyl] - 

2,3,6- tri-O-acetyl-β-D-galacto-pyranoside (1)25 (0.5g, 0.7 mmol) in the mixture of 

CCl4 (3 mL), CH3CN (3 mL), and H2O (4 mL) is added NaIO4 (1.27 g, 5.6 mmol). To 

this mixture was added RuCl3.H2O (3.1 mg, 2.2 mol %) and the reaction mixture was 

stirred at 25 oC for 2 h. After dilution with 10 mL of DCM, the reaction mixture was 

filtered through a Celite pad. The aqueous layer was extracted with twice with DCM 

and then organic layer was washed with water and brine. The crude mixture was 

obtained after drying with Na2SO4 followed by concentration under reduced vacuum. 

The crude product was purified to obtain the desired product (2) (0.47 g, 91 %) by 

silica column chromatography 

Rf (ethyl acetate/haxane): 0.30 (70/30) 

1H NMR (CDCl 3, 400 MHz): δ (ppm) 5.34 (d, 1H, J = 2.4 Hz), 5.22 (t, 1H, J = 9.2 

Hz), 5.09 (t, 1H, J = 8 Hz), 4.97-4.93 (m, 2H), 4.62 (d, 1H, J = 7.6 Hz), 4.50-4.47 (m, 

2H), 4.29 (s, 2H), 4.11-4.04 (m, 3H), 3.87 (t, 1H, J = 6.4 Hz), 3.80 (t, 1H, J = 9.2 Hz), 
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3.65-3.61 (m, 1H), 2,14 (s, 3H), 2.11 (s, 3H), 2.05 (s, 3H), 2.04 (s, 3H), 2.03 (s, 3H), 

2.03 (s, 3H), 1.93 (s, 3H). 

13 C NMR (CDCl3, 100 MHz): δ (ppm) 170.6, 170.6, 170.3, 170.3, 170.1, 169.9, 

169.2, [101.2, 100.4 (CHanomeric)], 76.2, 73.1, 72.5, 71.4, 71.1, 70.9, 69.2, 66.8, 65.5, 

61.9, 61.0, 21.0, 21.0, 20.9, 20.9, 2.08, 20.7.  

HRMS-MALDI (m/z): [M+Na]+Calcd for C28H38NaO20, 717.5791; Found, 717.6184. 

O

OH

HO

HO

HO

O

OH

HO
HO

O
O

OH

OO

OAc

AcO

AcO

OAc

O

OAc

AcO
AcO

O
O

OH

O

Synthesis of Carboxymethyl-4-O-(β-D-galactopyranosyl)-β-D glucopyranoside 

3.

To a carboxymethyl-4-O-[2,3,4,6-tetra-O-acetyl-β-D-glucopyranosyl]-2,3,6-tri-O-

acetyl-β-D-galacto-pyranoside (2) (0.4 g, 0.57 mmol) in MeOH (5 mL) was added Na 

(27 mg, 1.14 mmol) and stirred at 25 oC for 2 h. The reaction mixture was neutralized 

with Dowex-ion-exchange resin. The desired (3) was obtained through Celite 

filteration followed by evaporation of solvent under reduced pressure in good yield 

(0.21 g, 89 %).  

1H NMR (CDCl 3, 400 MHz): δ (ppm) 4.46 (d, 1H, J = 16.4 Hz), 4.30-4.23 (m, 2H), 
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3.81 (d, 1H, J = 3.2 Hz). 

13 C NMR (CDCl3, 100 MHz): δ (ppm) 173.0, 170.8, 170.5, 17.4, 170.2, 100.4 

(CHanomeric), 71.1, 70.7, 68.6, 67.1, 65.0, 61.4, 21.0, 20.9, 20.8, 20.8. 

HRMS-ESI (m/z): [M+Na]+Calcd for C14H24NaO13, 423.1115; Found, 423.0942. 

O
BnO

BnO
BnO

O

O
OH

O
BnO

BnO
BnO

OAc

O
BnO

BnO
BnO

O

O

O

C8F17

O
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BnO
BnO

OAc

O

Synthesis of Carboxymethyl-3,4,6-tri-O-benzyl-2-O-(2-O-acetyl-3,4,6-tri-O-

benzyl-αααα-D-mannopyranosyl)-αααα-D-mannopyranoside 9. 

To a solution of 3-(perfluorooctyl)propanyloxybutenyl-3,4,6-tri-O-benzyl-2-O-(2-O-

acetyl-3,4,6-tri-O-benzyl-α-D-mannopyranosyl)-α-D-mannopyranoside (8) (0.2 g, 

0.15 mmol) in DCM was bubbled O3 at -78 oC for 5 min. The light-blue solution was 

treated with PPh3 (58 mg, 0.23 mmol) and was allowed to warm to room temperature. 

After 30 min, the crude aldehyde product was obtained after concentration under 
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reduced vacuum. To a solution of aldehyde product in acetone was added Jones 

reagent (0.16 mL, 0.13 mmol) and the mixture was stirred for 30 min. After TLC 

analysis, excess reagent was quenched with 2-propanol and sold was filtered off 

through a Celite pad. The pure product (9) (0.12 g, 89 %) was obtained after 

concentration under reduced vacuum followed by purified through silica column 

chromatography (Hexane:Ethyl Acetate = 1:2). 

Rf (ethyl acetate/haxane): 0.30 (70/30) 

1H NMR (CDCl 3, 400 MHz): δ (ppm) 7.33-7.15 (m, 30H), 5.52 (s, 1H), 5.07 (s, 1H), 

4.98 (s, 1H), 4.83 (dd, 2H, J = 10.8, 6 Hz), 4.68 (s, 2H), 4.67-4.60 (m, 3H), 4.53-4.39 

(m, 5H), 4.10-4.02 (m, 3H), 3.96-3.90 (m, 3H), 3.80-3.65 (m, 7H), 2.11 (s, 3H). 

13 C NMR (CDCl3, 100 MHz): δ (ppm) 173.5 (C=O), 170.5 (C=O), [138.7, 138.6, 

138.4, 138.3 (Cq-Aryl)], 128.7-127.8 (m, CH-Aryl), [99.8, 99.0 (CHanomeric)], 79.7, 

78.4, 75.4, 74.7, 73.7, 73.6, 72.7, 72.4, 72.3, 72.2, 69.4, 69.2, 69.1, 63.7, 21.4 (CH3). 

HRMS-MALDI (m/z):  [M+Na]+Calcd for C58H62NaO14, 1005.4037; Found, 

1005.4289 
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Synthesis of Carboxymethyl-2-O-(2-O-α-D-mannopyranosyl)-α-D- 

mannopyranoside 10. 

To a carboxymethyl-3,4,6-tri-O-benzyl-2-O-(2-O-acetyl-3,4,6-tri-O-benzyl-α-D-

mannopyranosyl)-α-D-mannopyranoside (9) (0.1 g, 0.11 mmol) was dissolved in THF 

(8 mL) and MeOH (0.5 mL) in a flask. Liquid ammonia (20 mL) was then condensed 

into the flask at -78 oC. Sodium metal was added in several portions until the solution 

was dark blue. The dark blue solution was stirred at -78 oC for 30 min. Following 

disappearance of the dark blue color, EtOH (3 mL) was added and ammonia was 

blown off with a stream of air. The solution was then neutralized with acidic Dowex-

resin to pH 7 and the resin was filtered off through a Celite pad. The desired (10) was 

obtained through evaporation of solvent under reduced pressure in good yield (34 mg, 

75 %).   

1H NMR (CD 3OD, 400 MHz): δ (ppm) 5.15 (s, 1H), 4.98 (s, 1H), 4.24 (m, 2H), 
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3.96-3.57 (m, 12H). 

13 C NMR (CD3OD, 100 MHz): δ (ppm) 172.3 (C=O), [102.9, 98.7 (CHanomeric)], 

78.8, 78.8, 74.0, 73.7, 71.2, 70.6, 67.4, 63.7, 63.4, 61.8, 61.7. 

HRMS-ESI (m/z): [M+Na]+Calcd for C14H24NaO13, 423.1115; Found, 423.0923. 

 

Modification of polymeric particles with sugars. 

 

- Micro-beads (10 ~ 15 um) : 6.69 x 10-4 COOH/mg
- Nano-beads (200 ~ 600 nm) : 9.59 x 10-4 COOH/mg

HO O n
H2N NH2 (10 eq)

EDC (12 eq)
N-Hydroxysuccinimide (12 eq)

Deionized water, 25 oC
8 - 9 h (repeated reaction twice)

H
N O n

H2N
m

EDC (12eq)
N-Hydroxysuccinimide (12 eq)

Lactose 3(10eq) or Dimannose 10(10eq)

Deionized water, 25 oC
8 - 9h

polymeric 
particle

polymeric 
particle

 CPTEG:CPH=50:50
 CPH:SA=50:50

 CPTEG:CPH=50:50 (with FITC)
 CPH:SA=50:50 (with FITC)

H
N O n

polymeric 
particle

N
H

O
O

R

R = Lactose and Dimannose  

  To a solution of microshperes (20 mg, 1.34 x 10 -2 mmol of COOH) was added 

EDC (31 mg, 0.16 mmol: 12 eq) solution (100 µL) in deionized water (DI water) and 

NHS (19 mg, 0.16 mmol) solution (DI water, 100 µL) followed by ethylenediamin 

(8.9 µL, 0.13 mmol: 10 eq) in DI water (100 µL). The reaction mixture was stirred at 
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25 oC for 8 ~ 9 h (X 2) and then microspheres were washed with DI water 2 ~ 3 times 

for the Kaiser test. 1 mg of particles was used to perform a Kaiser test (positive:deep 

purple color). To a solution of sugar (53 mg, 0.13 mmol: 10 eq) in DI water (200 µL) 

was added EDC (31 mg, 0.16 mmol) solution (100 µL of DI water) followed by NHS 

(19 mg, 0.16 mmol) solution (DI water, 100 µL). The reaction mixture was stirred for 

10 min and then combined with amine-functionalized particles in DI water (200 µL, 

pH = 9). The mixture was stirred at 25 oC for 8 ~ 9 h (X 2) and then performed the 

Kaiser test with 1 mg of particles (negative: dark brown color). Di water was removed 

and wet sugar-coated particles were dried under high vacuum. (Particle aggregation 

was prevented by using probe sonicator during coupling reaction.) 
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CHAPTER 7 

 

Conclusions and Future Directions 

In this dissertation, the first automated solution-phase syntheses of oligosaccharides 

that are related to infectious disease such as HIV, leishmaniasis and tuberculosis are 

reported. The use of a new fluorous-based automation platform enabled the facile 

synthesis of HIV-associated linear α-(1,2)-pentamannose as well as a Leishmania-

capping tetrasaccharide. In addition, chemistry for the construction of phosphate-

linked sugars was successively programmed and applied to the synthesis of 

lipophosphoglycans associated with Leishmania. The new automated methods 

developed herein and featured in the construction of complicated oligosaccharides not 

only opens up a new era for oligosaccharide library synthesis—capable of facilitating 

diversity both in structure and sequence—but also easier access to carbohydrates for 

systematic structure-function relationship studies. The combination of the fluorous-

based automation platform with fluorous-based microarrays should be a powerful tool 

for accelerating research progress in glycomics.  

In addition to the development of automated methods for the synthesis of several 
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bioactive oligosaccharides, this thesis demonstrates the importance of systematic 

structure-function evaluations for carbohydrate structures in understanding innate 

immune responses to these structures. Methods to attach synthetic sugars to latex 

beads or erodable polymeric particles for multivalent displays are reported. 

Collaborative studies show that these synthetic structures exhibit clear differences in 

the activation of innate immune responses based solely on differences in the 

carbohydrate structure. Further studies on the effect of carbohydrate structures on 

immune responses will aid the development of carbohydrate-based antigens as 

vaccine adjuvants and vaccines. Future studies should also aim to evaluate the 

immunomodulatory effects of structurally different cap sugars in vivo. Ultimately, 

significant progress both in the synthetic tools available and in the study of immunity 

induced by carbohydrates will provide the necessary background to fully develop and 

evaluate the therapeutic potential of carbohydrate-based vaccines as 

immunomodulatory adjuvants.  
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APPENDIX A. 

CHAPTER 2 1H AND 13C NMR SPECTRA 
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APPENDIX B. 

CHAPTER 3 1H AND 13C NMR SPECTRA 
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APPENDIX C. 

CHAPTER 4 1H AND 13C NMR SPECTRA 
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APPENDIX D. 

CHAPTER 5 1H AND 13C NMR SPECTRA 
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APPENDIX E. 

CHAPTER 6 1H AND 13C NMR SPECTRA 
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